Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 55 (1994), S. 190-199 
    ISSN: 0730-2312
    Keywords: osteoclast ; osteocalcin ; bone marrow ; differentiation ; resorption ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Murine long-term bone marrow cultures (LTBMCs) were used to generate hematopoietic cells free from marrow stromal cells. These progenitor cells were treated with GM-CSF (5 U/ml) with or without rat bone osteocalcin or rat serum albumin in either α-MEM with 2% heat-inactivated horse serum alone (α) or supplemented with 10% L-cell-conditioned medium (as a source of M-CSF) (L10). Few substrate-attached cells survived in basal α medium, but when treated with L10 medium or GM-CSF, they survived and proliferated. Osteocalcin did not significantly affect survival or proliferation. Subcultures of cells treated with GM-CSF had large numbers of multinucleated cells, more than half of which were tartrate-resistant acid phosphatase-positive (TRAP). Osteocalcin further promoted the development of TRAP-positive multinucleated cells; a dose of 0.7 μg/ml osteocalcin promoted osteoclastic differentiation by 60%. Using a novel microphotometric assay, we detected significantly more tartrate-resistant acid phosphatase activity in the osteocalcin plus GM-CSF group (75.6 ± 14.2) than in GM-CSF alone (53.3 ± 7.3). In the absence of M-CSF, GM-CSF stimulated tartrate-resistant acid phosphatase activity, but osteocalcin did not have an additional effect. These studies indicate that osteocalcin promotes osteoclastic differentiation of a stromal-free subpopulation of hematopoietic progenitors in the presence of GM-CSF and L-cell-conditioned medium. These results are consistent with the hypothesis that this bone-matrix constituent plays a role in bone resorption. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 114 (1983), S. 88-92 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Previous studies have shown no detectable colony-stimulating factor (CSF) in media harvested from long-term bone marrow cultures. In the present experiments supernatants from long-term cultures established in three laboratories were assayed for CSF by colony assay and by radioimmunoassay (RIA). Most samples were devoid of biologic activity but all contained CSF as judged by RIA. Biologic activity was found in the majority of samples after diafiltration to remove low molecular weight inhibitors or 5-fold concentration by ultrafiltration. Samples that remained inactive in the colony assay were subjected to gel filtration on Sephadex G-150 to remove potential high molecular weight inhibitors. Biologic activity remained lower than that by RIA in two of three samples tested. Thus, most long-term cultures appear to contain biologically active CSF but this activity is masked by various types of inhibitors. In addition some media appear to contain material that is only detected by RIA.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 136 (1988), S. 182-187 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Hematopoiesis in vivo is dependent upon the interaction of hematopoietic stem cells with a complex microenvironment, of which stromal proteoglycans are an important functional component. Certain bone marrow stromal cell lines provide a microenvironment that supports hematopoiesis in vitro, a function that is dependent upon glucocorticoid supplementation. Proteoglycan synthesis in the hematopoietic-supportive D2XRll, Bl6 and 14F1 bone marrow stromal cell lines was studied by 35S-sulfate precursor labelling and ion-exchange separation, followed by isopyknic CsCl density centrifugation and gel filtration HPLC. The effects of glucocorticoid were also investigated. A similar pattern of proteoglycan heterogeneity was observed in all three cell lines, although there was considerable quantitative variation. All cultures synthesized three species of chondroitin/dermatan sulfate (CS/DS) proteoglycans: DS1, excluded from a Bio-Sil TSK-400 HPLC column, and DS2, eluting at Kd = 0.31, were present mainly in the culture media. The smallest (DS3) eluted at Kd = 0.63 and was present mainly in the cell layers. CS/DS species were the major proteoglycans in all cultures. Hydrocortisone-free cultures also synthesized heparan sulfate (HS) proteoglycans, including a cell-associated form (HS1), partially excluded from the TSK-400 column, and a secretory form (HS2), eluting at Kd = 0.15. D2XRll cells also secreted an apparently-unique, high-density proteoglycan, Kd = 0.65, into the culture medium. Hydrocortisone at 10-6 M virtually abolished HS proteoglycan synthesis in all three cell lines, and altered the pattern of CS/DS proteoglycans in the culture media, increasing the quantity of DS1 and DS3, and reducing the quantity of DS2.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The adherent stromal layer in long-term bone marrow cultures (LTBMC) provides the cellular environment necessary for the in vitro proliferation and differentiation of pluripotential hematopoietic stem cells. The role of humoral hematopoietic growth factors, colony-stimulating factors (CSF) in the regulation of hematopoietic cell production in this system is poorly understood. We have recently isolated and cloned an adherent cell line, D2XRII, derived from murine LTBMC. Plateau phase 25 cm2 cultures of 2 × 106 D2XRII cells in 8.0 ml produced CSF-1 (M-CSF) at around 100-150 units/0.1 ml medium. Following X-irradiation there was a dose-dependent decrease in the production of CSF-1 to a plateau of 50% of control levels at 10,000 rad. Higher doses did not produce a further decrease. The X-ray dose reducing CSF-1 production to 50% was 100-fold above the lethal dose as measured by clonagenic survival following trypsinization and replating. Trypsinized replated viable adherent but nondividing X-irradiated D2XRII cells were maintained for up to 8 weeks after irradiation and demonstrated continuous production of CSF-1. The data indicate significant divergence of two biologic effects of X-irradiation on plateau-phase marrow stromal cells: physiologic function of adherence and CSF-1 production, versus proliferative integrity. This divergence of effects may be very relevant to understanding the mechanism of X-irradiation-associated marrow suppression and leukemogenesis.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 145 (1990), S. 53-59 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The Steel anemia of mice results from an inherited defect in the hematopoietic microenvironment. Proteoglycans synthesized by bone marrow stromal cells are an important functional component of the hematopoietic microenvironment in normal animals. It is thus possible that Steel anemia results from a molecular abnormality involving bone marrow stromal proteoglycans. To investigate this possibility, we studied proteoglycan synthesis in three stromal cell lines from Steel anemic (SI/SId) animals and two control stromal cell lines, one (+/+2.4) from a non-anemic littermate, and one (GBI/6) from a normal mouse. Proteoglycans were precursor labelled with 35S sulfate and separated by ion exchange HPLC, CsCI density gradient centrifugation, and molecular sieve HPLC. Glycosaminoglycan (GAG) moieties were characterized by molecular sieve HPLC and enzyme sensitivity. There were no consistent differences in total proteoglycan synthesis, proteoglycan heterogeneity, GAG hydrodynamic size, or enzyme sensitivity among the cell lines studied. Growth factor binding to stromal extracellular matrix (ECM) was studied by co-culture of an IL-3-dependent cell line (FDC-P1) with cell-free ECM preparations from an SI/SId and a control (GBI/6) stromal cell line, with and without pre-incubation with IL-3. Cell-free ECM preparations from SI/SId and control cell lines supported FDC-P1 growth to an approximately equal extent after pre-incubation with II-3. FDC-P1 growth support by ECM preparations from both cell lines was also observed without IL-3 pre-incubation, although to a lesser extent, suggesting ECM binding of endogenous growth factors synthesized by the stromal cells.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...