Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 14 (1988), S. 235-240 
    ISSN: 1432-0983
    Keywords: Cell Cycle ; Phosphoprotein ; Schizosaccharomyces pombe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The 34 kilodalton protein product (p34) of the cdc2 + cell cycle control gene of Schizosaccharomyces pombe was expressed in bacteria. Monoclonal antibodies raised against this protein are capable of immunoprecipitating p34dc2 from yeast lysates. Immunoprecipitates of [35S]methionine- and [32P]orthophosphate-labeled p34cdc2 were analyzed by two-dimensional gel electrophoresis. The cdc2 + gene product is homogeneous in size but resolves into seven species of differing charge. At least four of these species are phosphorylated. Phosphoamino acid analysis reveals that phosphorylation occurs mainly on threonine residues. The pattern of p34 phosphorylation is unaltered at the nonpermissive temperature in strains carrying temperature sensitive alleles of wee1-50 and ran1-114 or in a strain over-producing the ran1 + gene product.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 11 (1986), S. 119-125 
    ISSN: 1432-0983
    Keywords: Cell cycle ; cdc2 ; Flow cytometry ; Schizosaccharomyces
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The cell cycle of Schizosaccharomyces pombe in continuous culture is controlled at two steps, one which limits the transition from G1 to S phase and the other which determines the timing of cell division. We have investigated, by means of flow-cytofluorometry, the cell cycle characteristics of nutritionally starved cells in stationary phase. Cells were shown to become arrested in either G1 or G2, in ratios which depended on the composition of the growth medium. G1 and G2 stationary phase cells share certain properties. (1) They become relatively resistant to heat shock. (2) They can reenter the cell cycle after subculture into fresh medium. (3) The G1 and G2 arrested populations have equal long-term viability in stationary phase. (4) Both populations require the activity of the cdc2 + gene for reentry into the cell cycle. We suggest that cell cycle arrest in stationary phase is regulated by the activity of the same G1 and G2 controls which limit the rate of cell cycle progression in continuous culture. The data demonstrate that in fission yeast the transition from G1 to S phase does not mark a point of commitment to the completion of the cell cycle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...