Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Atomic physics  (1)
  • Cell death  (1)
  • Receptive fields  (1)
  • 1
    ISSN: 0375-9474
    Schlagwort(e): Atomic physics
    Quelle: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Thema: Physik
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 35 (1979), S. 425-442 
    ISSN: 1432-1106
    Schlagwort(e): Rat ; Lateral geniculate nucleus ; Receptive fields ; Conduction velocity
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary 1. The receptive field properties and responses to electrical stimulation of 126 P-cells recorded from the dorsal lateral geniculate nucleus (LGNd) were studied in the hooded rat. 2. Eighty-five cells had a concentric (Kuffler, 1953) receptive field organisation (46 off-centre on-surround; 39 on-centre off-surround). Of the remaining cells 29 had co-extensive on/off excitatory discharge regions, nine had on-centres with suppressive surrounds and two cells gave on-responses but had no suppressive surround. One cell was identified as suppressed-by-contrast. 3. On the basis of the battery of tests developed for the identification of cell types in the cat's retina and LGNd, 35 of the cells with a Kuffler-type receptive field organisation were identified as Y-like. The majority of the remaining cells, both concentric and others, reminded us of the different subclasses of W-cells of the cat. Nine concentric cells in most of the tests exhibited X-like properties. 4. All of the Y-like cells were driven by relatively fast conducting retinal ganglion cell axons, comprising the t1 conduction velocity group. The majority of the remaining cells were driven by slower axons comprising t2 or t3 conduction velocity groups. 5. Thus, in the rat, as in other mammalian species studied so far, there is a correlation between the conduction velocity groups in the retino-geniculo-cortical pathway and the functional groups based on the cells’ receptive field properties. There seem to be functional equivalents of the cat's Y- and W-cell classes but evidence for a distinct X-like class of cells is lacking.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 48 (1982), S. 377-386 
    ISSN: 1432-1106
    Schlagwort(e): Retinal ganglion cells ; Cell death ; Trophic factors ; Tissue culture ; Development
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The enzyme horseradish peroxidase (HRP) was injected into the visual centres of the brains of neonatal rats. Following dissociation of retinae into tissue culture, the ganglion cells could be identified by appropriate histochemical staining for HRP reaction product. Cultures were prepared of dissociated retinae from rats aged 2–6 days postnatal. After 3 h the cultures were fixed, and HRP-labelled cells visualized and counted. Estimates were made of the number of ganglion cells per retina at each age. Results indicated a loss of ganglion cells during the first few postnatal days. This loss paralleled that observed in vivo. It was further found the retinal ganglion cells died rapidly in vitro when cultured in a minimal medium. Only 50% of ganglion cells originally plated remained viable after 24 h. However, the survival rate could be increased to 100% by coculturing the cells with diencephalon and mesencephalon; these contain the retinorecipient nuclei. Coculturing with cerebellum did not result in such an enhanced survival rate. Ganglion cells could be maintained over longer periods of time by reinoculating the cultures with additional tissue containing diencephalon and mesencephalon. These results support the hypothesis that developing neurons require trophic factors from their target tissues in order to survive.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...