Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Harmaline tremor ; Cerebellum ; Inferior olive ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Purkinje cells were recorded extracellularly and mapped in the cerebellar cortex of the rat under tremogenic doses of harmaline. Four différent types of responses were encountered, of which two were considered as being responsible for the harmaline tremor. The latter had a regular firing pattern of complex spikes at 5 to 10 Hz and were mostly found in the vermis. Their number decreased in the more lateral region of the cerebellar cortex until they eventually disappeared. Horseradish peroxidase was injected into all the areas of the cerebellar cortex containing Purkinje cells with harmaline-induced activity. Labeled neurons were in all cases traced to the medial accessory olive. The metabolic activity of the inferior olive under harmaline was measured with 2-deoxyglucose. Increased labeling was only found in the medial accessory olive. Such an increase was demonstrated as being due to a direct effect of the drug on the inferior olivary neurons, indicating that the medial accessory olive is responsible for the harmaline tremor in the rat. Our results point out that, in the rat, there is an inverse relationship between serotoninergic innervation of a region in the inferior olivary nucleus and that with harmaline sensitivity, therefore a serotoninergic mechanism hypothesis for the harmaline tremor needs further investigation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Cerebellum ; Fastigial nucleus, [14C]-2-deoxyglucose ; Unit activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The cerebellar output function was studied using cerebellopetal proprioceptive stimulation hich produces simple and complex excitatory discharges as well as inhibitory activity in the Purkinje cells. The activity of the intracerebellar nuclei (and of the entire brain stem) was measured by the energy consumption as revealed with the [14C]-2-deoxyglucose method. The stimulations consisted of repetitive (1–20 c/s) electrical excitation of the nerve leading to the inferior oblique, to the masseteric and to the gastrocnemius soleus muscle. Compared to a group of non-stimulated controls, heavy bilateral labeling was obtained in the posterior pole of the fastigial nucleus. This was not observed with stimulation of the vibrissal pad which, however, produced a clear increase of [14C]-2-deoxy glucose uptake in the secondary trigeminal complex. Labeling of the posterior part of the fastigial nuclei was suppressed by ablation or pharmacologic inactivation of the overlying cerebellar cortex which suppresses the inhibitory activity of the Purkinje cells into the nuclear cells. Labeling of the posterior fastigial nuclei was also decreased in animals not stimulated but with ablation or pharmacologic inactivation of the overlying cerebellar ortex. The hypothesis proposed is that the marking results are the consequence of an increased activity in the Purkinje cell terminals. The activity of the Purkinje cells was also recorded extracellulary both before and during repetitive stimulation of a muscle nerve. The discharge activity of those in the cerebellar vermis and giving axons to the posterior fastigial nucleus was increased by the stimulation, whereas the activity of those of the hemispheral parts remained unchanged. Units in the fastigial nucleus were also recorded. Their activity was found to be deeply depressed so that only a few units were encountered and no further decrease of their discharge could be detected with the stimulation of a muscle nerve. Nevertheless, using the present data and those previously obtained, the conclusion is advanced that the cerebellar output function is actually decreased during afferent cerebellar stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...