Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 64 (1986), S. 786-792 
    ISSN: 1432-1440
    Keywords: Erythrocyte ; Heart muscle ; Receptor regulation ; (Na++K+)-ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The assumption that the red blood cell can be used as a model for ouabain receptor regulation in heart muscle has been tested using isolated tissues from humans, guinea pigs, and chickens. The following results were obtained: 1. The affinity of the ouabain receptor was similar in both human erythrocytes and right atrial appendage, but the density of binding sites was much lower on the erythrocytes. There was no correlation between the binding capacity in both tissues. 2. Ouabain receptor occupation was closely correlated with inhibition of Na+/K+-transport in human erythrocytes and chick heart nonmuscle cells in culture. In contrast, in chick heart muscle cells, an occupation of 40% of the receptors decreased the Na+/K+-transport rate by only 10%. 3. In hypokalemia, the ouabain binding capacity was increased in human and guinea pig erythrocytes but not in guinea pig heart muscle. Such increases were seen in chick heart nonmuscle cells in moderate hypokalemia but in heart muscle cells only after severe hypokalemia. Incubation of chick heart muscle cells in toxic but not in “therapeutic” ouabain concentrations increased the number of ouabain receptors. Increases in receptor number attenuated the positive inotropic and toxic actions of ouabain. These variations between ouabain receptor regulation in red blood cells and heart muscle of several species may be attributable to the lack of a “sodium pump reserve” in erythrocytes and heart nonmuscle cells. Such variations indicate that the human erythrocyte is not a suitable model for the ouabain receptor in the human heart.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 17 (1971), S. 491-494 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 29 (1983), S. 696-698 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 14 (1968), S. 696-702 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The fundamental problem in this work was to determine if methods of predicting mass transport rates in porous catalysts, developed from theory in the absence of chemical reaction, are valid in the presence of reaction. By using the ortho-para shift of hydrogen over a ferric oxide gel catalyst as the reacting system, the effective diffusivity within the catalyst was determined from kinetic data on five different particle sizes of the catalyst. This effective diffusivity was then compared with that predicted by three different procedures recently published. These procedures predicted diffusivities approximately 40% below the experimentally obtained diffusivity. Although the differences between the experimental and predicted effective diffusivities can be regarded as within the limitations of the accuracy of the predictions, the observed differences may also be caused by some form of surface transport.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...