Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 1005-1017 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Ignition and extinction characteristics of homogeneous combustion of methane in air near inert surfaces are studied by numerical bifurcation theory for premixed methane/air gases impinging on planar surfaces with detailed chemistry involving 46 reversible reactions and 16 species. One-parameter bifuraction diagrams as functions of surface temperature and two-parameter bifurcation diagrams as functions of equivalence ratio and strain rate are constructed for both isothermal and adiabatic walls. Lean and rich composition limits for ignition and extinction, and energy production are determined from two parameter bifurcation diagrams. For a strain rate of 500 s-1, CH4/air mixtures exhibit hysteresis from ∼ 0.5% up to ∼ 12.5% and from ∼ 5.5% up to ∼ 13.5% near isothermal surfaces and adiabatic walls, respectively. Ignition temperature rises with composition from 1,700 to 1,950 K, without a maximum around the stoichiometric ratio. Under some conditions multiple ignitions and extinctions can occur with up to five multiple solutions, and wall quenching, kinetic limitations, and transport can strongly affect flame stability. Flames near the stoichiometric ratio cannot be extinguished by room temperature surfaces for sufficiently low strain rates. The role of intermediates in enhancing or retarding ignition and extinction is studied, and implications of the effect of catalytic surfaces on homogeneous ignition and extinction are discussed. Removal of H atoms and CH3 radicals by wall adsorption can increase extinction and ignition temperature of 6% CH4 in air by up to 300 K for a strain rate of 500 s-1.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 35 (1989), S. 737-745 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An investigation of the continuous chromatographic separation of an equimolar mixture of 1,3,5-trimethylcyclohexane and 1,3,5-trimethylbenzene with a 2.4 m × 1.37 cm ID vertical countercurrent moving bed is reported. The solid adsorbent was 30 mesh Al2O3, and the separation was carried out at 200°C. Steady-state axial concentration profiles of each species were determined by withdrawing vapor samples for analysis by gas chromatography. The binary mixture was continuously fed through a port located at approximately the midpoint of the column. The relative solids and carrier gas flow rates could be adjusted so that the more strongly adsorbed trimethylbenzene was transported downward, and less strongly adsorbed trimethylcyclohexane moved upward. For low feed rates, high-purity product streams of each were obtained at the bottom and top of the separator. For sufficiently high feed rates, trimethylbenzene was transported upward as well as downward, and top product purity deteriorated. This behavior is in qualitative accord with the predictions of a dispersionless, one-dimensional flow, adsorption equilibrium model incorporating a Langmuir isotherm.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 33 (1987), S. 1050-1051 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 1018-1025 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Emission of carbon monoxide (CO), formaldehyde (CH2O), and unburned methane (CH4) are calculated for premixed methane/air mixtures impinging on a flat surface as functions of surface temperature, equivalence ratio, and strain rate with detailed chemistry involving 46 reversible reactions and 16 species using numerical bifurcation theory. Multiple solutions with different selectivities to stable products are found. On the extinguished branch unburned CH4, molecular hydrogen (H2), CO, and CH2O dominate, whereas on the ignited branch carbon dioxide (CO2) predominates near the surface. Cold walls can promote the selectivity to CO and CH2O near extinction, and high flow rates can increase considerably the formation of CO, CH2O, and unburned CH4. For example, an ignited stoichiometric methane/air mixture (9.5% CH4 in air) impinging on a surface of 1,000 K is calculated to produce 2% CO, 150 ppm CH2O, and 3% unburned CH4 for a strain rate of 500 s-1. Maximum efficiency of CH4 and minimum selectivity to CH2O occur near the stoichiometric ratio, whereas minimum selectivity to CO occurs for fuel lean mixtures. Comparison of combustion near surfaces with freely propagating flames is also shown.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...