Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 15 (1969), S. 643-653 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Shear stress and first normal stress difference data are presented for several polymer solutions undergoing steady shear rates from 1.0 to 100,000 sec.-1. The steady shear response is divided into three regions as a function of increasing shear rate. These are the diffusion controlled linear region, a moderate shear rate region where shear controls the entanglement-disentanglement process, and a high shear rate region where aggregation of polymer molecules occurs. The transitions between the three regions are clearly illustrated by using a group designated as the rotation rate function.A molecular model is derived for the shear controlled region that allows prediction of the first normal stress difference from the viscosity function and one additional constant that depends only on the molecular species. The White-Metzner equation is found to adequately describe the aggregation region at high shear rates.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 14 (1968), S. 9-15 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A correlation is presented for predicting the drop volume for injection at low velocities of one Newtonian liquid into a second stationary immiscible Newtonian liquid in the absence of surface active agents. The analysis, which is based on a two-stage process of drop formation, predicts drop volumes within an average error of 11% for fifteen liquid-liquid systems covering a wider range of variables than any previous study. Although the equation was tested primarily with mutually saturated liquids, if correctly predicted drop size for two systems where mass transfer was occurring.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 15 (1969), S. 700-706 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A theoretical analysis is presented for predicting the size of drops formed from a laminar cylindrical jet when one Newtonian liquid is injected through a nozzle into a second immiscible Newtonian liquid. The analysis couples stability theory with the requirement that the disturbances travel at the same velocity as the jet interface. Comparison of the theory with experimental data for thirteen mutually saturated liquid-liquid systems covering a wide range of physical properties shows a mean error of 11.7% in prediction of the specific surface.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 15 (1969), S. 689-699 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The stability theory is used to predict jet length from jet inception to disruption for injection of one Newtonian liquid into a second immiscible Newtonian liquid. Knowledge of the length is essential for predicting the size of drops formed from jets. At low velocities jet length is controlled by the amplification of symmetrical waves which travel at the interfacial velocity of the jet. At higher velocities an abrupt lengthening of the jet may occur as a result of drop merging, and the jet length is then controlled by the growth rate of sinuous waves which are strongly velocity dependent. Jet disruption results from a geometrical limitation on the maximum amplitude of the sinuous waves. Predictions show good quantitative agreement with experimental data for thirteen mutually saturated systems over a wide range of variables and qualitative agreement with limited experimental data on the effects of initial disturbance level and mass transfer.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 13 (1967), S. 682-688 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The stability of cylindrical jets in immiscible liquid systems is analyzed with the low velocity theory of Tomotika. For the first time the several limiting solutions in the literature are obtained from a general equation, so approximate restrictions on their applicability can be presented. These restrictions show that for many systems none of the limiting solutions is valid. Correlations applicable to all Newtonian liquid-liquid systems are presented for predicting the growth rate and wavelength of the most unstable disturbance.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Plant/Operations Progress 5 (1986), S. 52-56 
    ISSN: 0278-4513
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An innovation which allows gas rates up to three times those allowable in conventional pads.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...