Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 32 (1986), S. 163-166 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 22 (1976), S. 463-471 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A computer model was developed for tubular high-pressure polyethylene reactors. Plug flow and absence of axial mixing were assumed. Emphasis was placed on realistic modeling of the reaction kinetics and the variation of physical properties along the reaction coordinate. A good simulation of axial temperature profiles, conversion, molecular weights, molecular weight distribution, and transport properties along the reaction coordinate is believed to have been achieved. The model can be extended readily to cases where radial diffusion is significant.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 29 (1989), S. 69-76 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Mechanical properties, deformation modes under both uniaxial tension and compression, low temperature mechanical relaxation behavior, and resistance to fracture under dynamic loading have been investigated for a medium impact grade of polystyrene, Shear yielding is the dominant mode of plastic deformation in compression while matrix crazing, together with some tearing and cavitation of the rubber phase, occurs in tension. The craze microstructure, as determined by transmission electron microscopy (TEM), is typical of that noted in polystyrene, with sharp craze-bulk interfaces and a characteristic midrib section. The presence of a third phase, possibly a processing aid, is evident in the TEM scans and in the dynamic mechanical data. The present data, together with the data obtained on polystyrene and on high impact polystyrene, are used to show the strong influence of rubber content on various mechanical properties, such as the tensile craze yielding stress, ductility, compression yield strength, degree of strain softening, and fatigue durability.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A series of polished polystyrene specimens, coated with silicone oil, were tested in tension and in tension-compression fatigue cycling at 21 Hz. Oils of four different viscosities, ranging from 5 cSt to 1000 cSt, were utilized. The craze initiation stress and the tensile fracture stress both increased with the increase of oil viscosity. For the 1000 cSt oil, the stress-strain curve was essentially the same as that of an uncoated sample. The average lifetime to fracture in the fatigue tests depends upon the stress amplitude and on the oil viscosity. For the 1000 cSt oil, the fatigue behavior is similar to that of uncoated samples, except at high imposed stresses, where lifetime is somewhat lower. For the low viscosity oil, the average lifetime is from one to two decades less than for uncoated samples. Discussion is given of the influence of stress amplitude and oil viscosity on the test results and on the morphology of the fracture surfaces.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 24 (1984), S. 786-797 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The performance of styrene-acrylonitrile copolymers under alternating stresses has been examined. Information has been obtained concerning the influence of acrylonitrile content and of molecular weight on thermal effects due to hysteresis, on cyclic lifetime to craze initiation, on average cycles to fracture, and on fatigue fracture surface morphology. The influence of an elastomeric second phase has been determined by comparing fatigue performance under comparable conditions of both styrene-acrylonitrile (SAN) and acrylonitrile-butadiene-styrene (ABS). The stress concentrating effects of the rubber particles cause earlier initiation of fatigue-induced damage and lower fatigue fracture resistance. The fatigue-induced specimen temperature rise is greater in ABS than SAN and it increases linearly with test frequency and as the square of the stress amplitude. The fracture surface morphology of ABS, which differs from that of unmodified SAN and also from that of rubber modified polystyrene, is discussed.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 1574-1584 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A sound wave extrusion system has been developed. This system includes a single screw extruder and an annular die having an internal surface oscillating in the sound frequency range. Oscillating shear flow has been imposed in the direction parallel to the main pressure flow. The die characteristics and average melt temperature at the exit from the die for several thermoplastics have been measured with and without imposition of oscillations. Modeling of parallel superposition of sound oscillations upon pressure flow has been performed using the Leonov viscoelastic constitutive equation. Three cases are considered: (i) the process is isothermal and the change in die pressure is only due to a nonlinear interaction of oscillatory and pressure flow; (ii) the process is nonisothermal and adiabatic, and pressure reduction is due to the nonlinear interaction and the dissipation of oscillatory energy leading to the temperature rise in polymer melts; (iii) the process is nonisothermal with heat transfer due to transient heat conduction and the dissipation of oscillatory energy. Pressure reduction occurs due to both nonlinear interaction and temperature rise. It is found that case (i) cannot explain the observed die pressure reduction, while case (ii) describes those data only at high flow rates. The theoretical results from case (iii) are found to be in qualitative agreement with experimental observations. Generally, the theoretical results of case (iii) are better than those of cases (i) and (ii).
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 472-476 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Because of differences in chemical structure and rheological characteristics, high density polyethylene (HDPE) and poly(ethylene terephthalate) (PET) are incompatible when blended during recycling of PET soft drink bottles. To improve the properties of the blends, ethylene vinyl acetate copolymer (EVA) was used as a compatibilizer. Based on torque rheometer tests, the higher the concentration of PET in the blends, the higher the initial loading torque. Blends of 50% HDPE and 50% PET had the lowest equilibrium torque. Equilibrium torque was highest at 5% EVA. The presence of EVA made only a slight difference in the glass transition temperatures of HDPE/PET blends. Higher EVA content in the blend resulted in a lower melting endotherm. Thermogravimetric analysis showed that thermal stability was independent of EVA content; but the more PET in the blend, the lower the final weight loss.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 2668-2682 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A bioartificial pancreas, consisting of immobilized islets encapsulated within hollow fibers, is investigated as an alternative treatment for insulin-dependent diabetes. A mathematical model is developed to determine whether this configuration of the bioartificial pancreas can yield an insulin response to a glucose challenge with the appropriate dynamics in diabetic humans. The model consists of the 2-D mass-conservation equations for glucose and insulin within the hollow fiber and capillaries. The equations contain terms for insulin-production kinetics by porcine islets and glucose-consumption kinetics. The boundary conditions account for transport resistances of the fiber membrane, the tissue surrounding the implant, and a thin film within the capillaries. The equations are coupled to a pharmacokinetic model of the circulatory system. The calculations show that an optimized design with this configuration will be feasible for human use and requires a total volume of 4.6 mL to reach the target insulin concentration in the bloodstream following a glucose challenge. The parameters and processes controlling the system performance are discussed.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...