Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel: DFG Deutsche Nationallizenzen  (19)
  • Chemistry  (19)
Datenquelle
  • Artikel: DFG Deutsche Nationallizenzen  (19)
Materialart
Erscheinungszeitraum
Schlagwörter
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 15 (1983), S. 1111-1118 
    ISSN: 0538-8066
    Schlagwort(e): Chemistry ; Physical Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Absolute rate coefficients for the reactions of the hydroxyl radical with ethane (k1, 297-300 K) and propane (k2, 297-690 K) were measured using the flash photolysis-resonance fluorescence technique. The rate coefficient data were fit by the following temperature-dependent expressions, in units of cm3/molecule·s: k1(T) = 1.43 × 10-14T1.05 exp (-911/T) and k2(T) = 1.59 × 10-15T1.40 exp (-428/T). Semiquantitative separation of OH-propane reactivity into primary and secondary H-atom abstraction channels was obtained.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 17 (1985), S. 303-313 
    ISSN: 0538-8066
    Schlagwort(e): Chemistry ; Physical Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Rate coefficients for OH reactions with the 2-5 carbon aliphatic aldehydes have been measured under pseudo first-order conditions in OH. OH was generated by flash photolysis of H2O at wavelengths greater than 165 nm and its concentration monitored using time-resolved resonance fluorescence spectroscopy. Two reactions were studied only at 298 K while five reactions were studied over the temperature range 250-425 K; negative activation energies were observed for all five reactions. Aldehyde reactivity toward OH is nearly independent of the identity of the hydrocarbon side chain. Our results are compared with those obtained in previous studies of OH-aldehyde reaction kinetics and their mechanistic implications are discussed.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 26 (1994), S. 719-728 
    ISSN: 0538-8066
    Schlagwort(e): Chemistry ; Physical Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: The rate coefficients for the reactions of Cl atoms with CH3Br, (k1) and CH2Br2, (k2) were measured as functions of temperature by generating Cl atoms via 308 nm laser photolysis of Cl2 and measuring their temporal profiles via resonance fluorescence detection. The measured rate coefficients were: k1 = (1.55 ± 0.18) × 10-11 exp{(-1070 ± 50)/T} and k2 = (6.37 ± 0.55) × 10-12 exp{(-810 ± 50)/T} cm3 molecule-1 s-1. The possible interference of the reaction of CH2Br product with Cl2 in the measurement of k1 was assessed from the temporal profiles of Cl at high concentrations of Cl2 at 298 K. The rate coefficient at 298 K for the CH2Br + Cl2 reaction was derived to be (5.36 ± 0.56) × 10-13 cm3 molecule-1 s-1. Based on the values of k1 and k2, it is deduced that global atmospheric lifetimes for CH3Br and CH2Br2 are unlikely to be affected by loss via reaction with Cl atoms. In the marine boundary layer, the loss via reaction (1) may be significant if the Cl concentrations are high. If found to be true, the contribution from oceans to the overall CH3Br budget may be less than what is currently assumed. © 1994 John Wiley & Sons, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 24 (1992), S. 973-982 
    ISSN: 0538-8066
    Schlagwort(e): Chemistry ; Physical Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: The rate constants for the reaction H + HBr → H2 + Br were measured between 217 and 383 K using pulsed laser photolysis of HBr and cw resonance fluorescence detection of H(2S). The temporal profiles of the product Br atoms were also monitored to obtain the rate constant at 298 K. The yield of Br from the reaction was determined to be unity. The rate coefficient as a function of temperature is given by the Arrhenius expression, k 1 = (2.96 ± 0.44) × 10-11 exp(-(460 ± 40)/T) cm3 molecule-1 s-1. The quoted errors are at the 95% confidence level and include estimated systematic errors. Our results are compared with those from previous direct measurements. © John Wiley & Sons, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 0538-8066
    Schlagwort(e): Chemistry ; Physical Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: These tables of evaluated rate constants for use in stratospheric modeling have been taken from the most recent report of the NASA Panel that has been periodically producing such reviews. They are reproduced here to make a broader community aware of their existence. This article should NOT be cited, nor should these rate constants be used without consulting the full report. All citations should be to that original report (JPL Publ. 85-37), which contains extensive documentation and discussion of the rationale of the evaluation. Copies may be obtained by requesting JPL Publ. 85-37 from Documentation Services, 111-116B, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109.
    Zusätzliches Material: 2 Tab.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 0538-8066
    Schlagwort(e): Chemistry ; Physical Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: The third order rate coefficients for the addition reaction of Cl with NO2, Cl + NO2 + M → ClNO2 (ClONO) + M; k1, were measured to be k1(He) = (7.5 ± 1.1) × 10-31 cm6 molecule-2 s-1 and k1(N2) = (16.6 ± 3.0) × 10-31 cm6 molecule-2 s-1 at 298 K using the flash photolysis-resonance fluorescence method. The pressure range of the study was 15 to 500 torr He and 19 to 200 torr N2. The temperature dependence of the third order rate coefficients were also measured between 240 and 350 K. The 298 K results are compared with those from previous low pressure studies.
    Zusätzliches Material: 1 Tab.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 22 (1990), S. 351-358 
    ISSN: 0538-8066
    Schlagwort(e): Chemistry ; Physical Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: The absolute second-order rate coefficient for the reaction, O(3P) + CH3OOH → products, was measured to be k1 = (1.06 ± 0.26) × 10-14 cm3 molec-1 s-1 at 297 K, where the quoted error is 2σ including precision and estimated systematic errors. The possible presence of (CH3CH2)2O in our sample of CH3OOH leads to a large error in k1 which reflects the relatively large uncertainty indicated. O(3P) was generated in excess CH3OOH by photolyzing a small amount of O3 at 532 nm, where CH3OOH does not photolyze. The rate of removal of O(3P) in the experiments was monitored by resonance fluorescence detection. The increased reactivity of O(3P) with CH3OOH relative to H2O2 is interpreted as due to H abstraction from the CH3 group.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 23 (1991), S. 483-527 
    ISSN: 0538-8066
    Schlagwort(e): Chemistry ; Physical Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: The kinetics of elementary gas phase reactions involved in the oxidation of reduced sulfur species, H2S, CS2, OCS, CH3SH, CH3SCH3, and CH3SSCH3, to SO2 (or other products) are reviewed. The reactions with OH and NO3 which are the processes that initiate the degradation of the above compounds have been evaluated. Reactions of key intermediates, HS, HSO, CH3S, and CH3SO, are discussed. Whenever possible, recommendations for the rate coefficients are made and the need for further work indicated. The review has been carried out with the atmospheric chemistry in mind by looking at the laboratory based kinetics data. This review also provides information that will help model the Earth's sulfur cycle.
    Zusätzliches Material: 19 Tab.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 24 (1992), S. 711-725 
    ISSN: 0538-8066
    Schlagwort(e): Chemistry ; Physical Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Rate coefficients, k1, for the reaction OH + HONO → H2O + NO2, have been measured over the temperature range 298 to 373 K. The OH radicals were produced by 266 nm laser photolysis of O3 in the presence of a large excess of H2O vapor. The temporal profiles of OH were measured under pseudo-first-order conditions, in an excess of HONO, using time resolved laser induced fluorescence. The measured rate coefficient exhibits a slight negative temperature dependence, with k1 = (2.8 ± 1.3) × 10-12 exp((260 ± 140)/T) cm3 molecule-1 s-1. The measured values of k1 are compared with previous determinations and the atmospheric implications of our findings are discussed.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 17 (1985), S. 1281-1297 
    ISSN: 0538-8066
    Schlagwort(e): Chemistry ; Physical Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Absolute rate coefficients for the reaction of OH with HCl (k1) have been measured as a function of temperature over the range 240-1055 K. OH was produced by flash photolysis of H2O at λ 〉 165 nm, 266 nm laser photolysis of O3/H2O mixtures, or 266 nm laser photolysis of H2O2. OH was monitored by time-resolved resonance fluorescenceor pulsed laser-induced fluorescence. In many experiments the HCl concentration was measured in situ in the slow flow reactor by UV photometry. Over the temperature range 240-363 K the following Arrhenius expression is an adequate representation of the data: k1 = (2.4 ± 0.2) × 10-12 exp[-(327 ± 28)/T]cm3 molecule-1 s-1. Over the wider temperature range 240-1055 K, the temperature dependence of k1 deviates from the Arrhenius form, but is adequately described by the expression k1 = 4.5 × 10-17 T1.65 exp(112/T) cm3 molecule-1 s-1. The error in a calculated rate coefficient at any temperature is 20%.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...