Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2234
    Keywords: Electric properties of excited states ; Dipole moments ; Dipole polarizabilities ; Excitation energies ; H2O ; CASSCF ; CASPT2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary The dipole moments and dipole polarizabilities of the 1A1, 1B1, and 3B1 electronic states of the water molecule have been calculated by using the CASSCF approach followed by the evaluation of the dynamic electron correlation contribution by the second-order perturbation scheme CASPT2. All calculations have been carried out in a specifically extended ANO basis set which accounts for the Rydberg character of the two excited states. In order to estimate the correctness and accuracy of the present data a scan over a variety of different active spaces for the CASSCF wave function has been made. The present results are superior to earlier CASSCF calculations, although their qualitative features remain essentially the same. The dipole moments in 1B1 and 3B1 states are predicted to be about 0.49 a.u. and 0.33 a.u., respectively, and have the opposite orientation with respect to the ground state dipole moment. The dipole polarizability tensors of the excited states are characterized by high anisotropy and are dominated by the in-plane component perpendicular to the symmetry axis. All their components are found to be about an order of magnitude larger than those of the ground state polarizability tensor. The excitation energy dependence on the choice of the active orbital space in the CASSCF reference function is also considered and the analysis of the present data concludes in the concept of what is called the mutually compatible active spaces for the two states involved in excitation. All CASPT2 results are in good agreement with the results of recent calculations carried out in the framework of the open-shell coupled cluster formalism. This agreement confirms the high efficiency of the CASSCF/CASPT2 approach to the treatment of the electron correlation effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0040-5744
    Keywords: Key words: Electric properties of excited states ; Dipole moments ; Dipole polarizabilities ; Excitation energies ; H2O ; CASSCF ; CASPT2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary.  The dipole moments and dipole polarizabilities of the 1A1, 1B1, and 3B1 electronic states of the water molecule have been calculated by using the CASSCF approach followed by the evaluation of the dynamic electron correlation contribution by the second-order perturbation scheme CASPT2. All calculations have been carried out in a specifically extended ANO basis set which accounts for the Rydberg character of the two excited states. In order to estimate the correctness and accuracy of the present data a scan over a variety of different active spaces for the CASSCF wave function has been made. The present results are superior to earlier CASSCF calculations, although their qualitative features remain essentially the same. The dipole moments in 1B1 and 3B1 states are predicted to be about 0.49 a.u. and 0.33 a.u., respectively, and have the opposite orientation with respect to the ground state dipole moment. The dipole polarizability tensors of the excited states are characterized by high anisotropy and are dominated by the in-plane component perpendicular to the symmetry axis. All their components are found to be about an order of magnitude larger than those of the ground state polarizability tensor. The excitation energy dependence on the choice of the active orbital space in the CASSCF reference function is also considered and the analysis of the present data concludes in the concept of what is called the mutually compatible active spaces for the two states involved in excitation. All CASPT2 results are in good agreement with the results of recent calculations carried out in the framework of the open-shell coupled cluster formalism. This agreement confirms the high efficiency of the CASSCF/CASPT2 approach to the treatment of the electron correlation effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Organic Magnetic Resonance 3 (1971), S. 589-594 
    ISSN: 0030-4921
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The 14N chemical shifts were measured for a series of quaternary ammonium salts of enamino ketones. An upfield shift of the 14N resonance signals upon quaternization has been observed. The interpretation in terms of the approximate theory of nuclear magnetic shielding is given. The calculations for some model systems result in a general agreement with the experimental data.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Organic Magnetic Resonance 2 (1970), S. 63-69 
    ISSN: 0030-4921
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An approximate procedure for the calculation of diamagnetic shielding in molecules is presented. The method proposed is based on the ‘complete neglect of differential overlap’ (CNDO) molecular wave functions and is formulated according to the zero differential overlap (ZDO) approximation. The results obtained with several CNDO-type wave functions for diatomic and polyatomic molecules are in very good agreement with non-empirical SCF calculations. The 14N diamagnetic shielding constants in several molecules were computed and some approximations usually adopted in the interpretation of 14N chemical shifts are critically discussed. It was shown that in some cases the observed 14N chemical shifts cannot be interpreted solely in terms of the paramagnetic contribution to the shielding constant.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 63 (1997), S. 35-38 
    ISSN: 0020-7608
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: It is shown that simple orthogonality constraints between some set of known approximate eigenfunctions and another set of functions which are to be determined as approximate eigensolutions need to be modified. The proposed modification introduces a measure of the approximate character of the known functions and leads to the reduction of the dimensionality of the eigenvalue problem for other solutions. The discussed method is fully variational and leads directly to a Hermitian eigenvalue problem. This approach is also independent of the choice of truncated basis sets for different classes of approximate solutions of the eigenvalue problem. © 1997 John Wiley & Sons, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 68 (1998), S. 159-174 
    ISSN: 0020-7608
    Keywords: relativistic quantum chemistry ; relativistic connections to expectation valves ; two/one-component methods in relativity ; perturbation methods in relativity ; Douglas-Kroll approximation ; mass-velocity+Darwin approximation ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effect of the so-called picture change on expectation values of one-electron operators in approximate two(one)-component relativistic theories is discussed. This effect is expected to be particularly large for operators which assume large values in the vicinity of heavy nuclei. The numerical results illustrating the picture change effect on electric field gradients at nuclei have been obtained in the spin-free Pauli and Douglas-Kroll approximations. It has been found that the picture change effect lowers the electric field gradient at I in HI by about 1 a.u. Very large picture change effect (-8 a.u.) has been calculated for HAt. It is concluded that in accurate calculations of expectation values of operators involving high inverse powers of the electron-nucleus distance the picture change, which accompanies the transformation of the Dirac (Dirac-Coulomb) equation to approximate two(one)-component relativistic Hamiltonians, must be taken into account.   © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 159-174, 1998
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 63 (1997), S. 557-565 
    ISSN: 0020-7608
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The electron correlation and relativistic effects on ionization potentials and electron affinities of Cu, Ag, and Au are investigated in the framework of the coupled cluster method and different 1-component approximations to the relativistic Dirac-Coulomb Hamiltonian. The first-order perturbation approach based on the massvelocity and Darwin terms is found to be sufficiently accurate for Cu and Ag while it fails for Au. The spin-averaged Douglas-Kroll no-pair method gives excellent results for the studied atomic properties. The ionization potentials obtained within this method and the coupled cluster scheme for the electron correlation effects are 7.733(7.735) eV for Cu, 7.461(7.575) eV for Ag, and 9.123(9.225) eV for Au (experimental values given in parentheses). The calculated (experimental) electron affinity results for Cu, Ag, and Au are 1.236(1.226), 1.254(1.303), and 2.229(2.309) eV, respectively. There is a marked relativistic effect on both the ionization potential and electron affinity of Ag which sharply increases for Au while Cu exhibits only a little relativistic character. A similar pattern of relativistic effects is also observed for electric dipole polarizabilities of the coinage metal atoms and their ions. The coupled cluster dipole polarizabilities of the coinage metal atoms calculated in this article in the Douglas-Kroll no-pair formalism (Cu: 46.50 au; Ag: 52.46 au; Au: 36.06 au) are compared with our earlier data for their singly positive and singly negative ions. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 557-565, 1997
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0020-7608
    Keywords: relativistic Hamiltonians ; two-component methods in relativity ; perturbation methods in relativity ; Douglas-Kroll approximation ; regular approximations in relativity ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A series of nonsingular two-component relativistic Hamiltonians is derived from the Dirac Hamiltonian by first performing the free-particle Foldy-Wouthuysen transformation and then a block-diagonalizing transformation. The latter is defined in terms of operators which can be determined iteratively through arbitrary order in α, leading to transformed Hamiltonians with the two-component block accurate through α2k, k=1, 2, 3,… . These Hamiltonians give relativistic energies which differ from Dirac's energies only in terms higher than α2k. Their relation to other nonsingular methods of relativistic quantum chemistry (the Douglas-Kroll method, the regular Hamiltonian schemes) is discussed. By removing the spin-dependent operators, the derived Hamiltonians can be written in spin-free one-component form. The computational effort involved is essentially the same as in the case of the Douglas-Kroll scheme and amounts to relatively easy modification of the core Hamiltonian.   © 1997 John Wiley & Sons, Inc. Int J Quant Chem 65: 225-239, 1997
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...