Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Chemistry  (2)
  • Site-specific mutagenesis  (1)
  • 1
    ISSN: 1617-4623
    Schlagwort(e): Site-specific mutagenesis ; O6-alkyl-guanine ; Transitions from T:MeG and T:BuG ; DNA repair ; Bacteriophage ΦX174
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary We have previously reported some effects of DNA repair on the transition frequencies produced by an O6-methyl-guanine (MeG) or an O6-n-butyl-guanine (BuG) paired with C at the first position of the third codon in gene G of bacteriophage ΦX174 form I'DNA (Chambers et al. 1985). We now report experiments in which the transition is produced from T:MeG or T:BuG, instead of C:MeG or C:BuG, located at this site. The site-modified DNAs were transfected into cells with normal DNA repair as well as into cells with repair defects (uvrA, uvrB, uvrC, recA, uvrArecA). The lysates were screened for phage carrying the expected transition using a characteristic change in phenotype. The data demonstrate that the transition frequency from T:BuG is low (0.3% of total phage progeny) in cells with normal repair (Escherichia coli AB1157) and increases 7-fold in uvrA cells (E. coli AB1886). A similar increase is seen in uvrB and uvrC cells (AB1885, AB1884). These data, like our previous data, indicate BuG is repaired primarily by excision. In contranst to this, the transition frequency from T:MeG is high (5±2%) in cells with normal repair. After induction of alkyl transfer repair in E. coli AB1157, the transition frequency goes up 5-fold. Compared with cells with normal repair, the transition frequency goes up 2-fold in uvrA, uvrB and uvrC cells; it goes up 1.5-fold in recA cells (E. coli AB2463). The data reinforce our earlier conclusion that MeG is repaired primarily by alkyl transfer, but the ABC excinuclease as well as RecA protein inhibit this repair process. Using the BuG data reported here and in our previous paper, we calculate that BuG pairs with a thymine residue 0.5%–0.62% of the time during replication in vivo, and that BuG markedly inhibits replication of the strand that contains it. Because of the complication introduced by alkyl transfer repair, similar calculations for MeG cannot be made from the current data.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 28 (1986), S. 811-817 
    ISSN: 0006-3592
    Schlagwort(e): Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Removal and modification of southern red oak hemicelluloses and lignin in a 0.05%(w/v) sulfuric acid hydrolysis were investigated. The hydrolysis profile was to raise the reaction from room temperature to 150°C for in 38 min and to extend the hydrolysis at 150°C for 1 h. At the end of the hydrolysis, 25.5% of red oak components were dissolved, of which 58% was xylose and 17% lignin. As the hydrolysis proceeded from room temperature to 150°C, a part of red oak xylan was removed to yield an oligomer fraction having maximal yield and average molecular weight of 3460 at 150°C. This fraction and the bulk xylan extracted during the first 30 min at 150°C were further degraded to give a lower molecular weight oligomer fraction, of which the yield and average molecular weight (2610) were highest at the end of the bulk removal of xylan. Red oak lignin, syringyl and guaiacyl units in particular, was increasingly removed with the progress of the hydrolysis. Lignin derivatives and a part of red oak extractives soluble in the hydrolysate were identified.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 29 (1987), S. 343-351 
    ISSN: 0006-3592
    Schlagwort(e): Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: A solid acid catalyst consisted of sulfonic groups covalently bound to an inorganic matrice was developed to dehydrate 2,3-butanediol into methyl ethyl ketone. Rate constant and apparent activation energy of the dehydration reaction were determined. The decay course of the catalyst was a two-stage curve. The catalyst was deactivated more rapidly in the first stage than in the second stage. The strategy of maintaining constant degree of dehydration was employed to lengthen the lifetime of catalyst. Treatment of the 2,3-butanediol containing fermentation broth with activated carbon greatly facilitated the subsequent dehydration reaction.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...