Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (3)
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The structural features of calcium guanosine-3′,5′-cytidine monophosphate (GpC) have been elucidated by X-ray diffraction analysis. The molecule was crystallized in space group P21 with cell constants of a = 21.224 Å, b = 34.207 Å, c = 9.327 Å, and β = 90.527°, Z = 8. The hydration of the crystal is 21% by weight with 72 water molecules in the unit cell. The four GpC molecules in the asymmetric unit occur as two Watson-Crick hydrogen-bonded dimers related by a pseudo-C face centering. Each dimer consists of two independent GpC molecules whose bases are hydrogen bonded to each other in the traditional Watson-Crick fashion. Each dimer possesses a pseudo twofold axis broken by a calcium ion and associated solvent.The four molecules are conformationally similar to helical RNA, but are not identical to it or to each other. Instead, values of conformational angles reflect the intrinsic flexibility of the molecule within the range of basic helical conformations. All eight bases are anti, sugars are all C3′-endo, and the C4′-C5′ bond rotations are gauche-gauche. The R factor is 12.6% for 2918 observed reflections at 1.2-Å resolution.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The conformation and packing scheme for guanosine-3′, 5′-cytidine monophosphate, GpC, were computed by minimizing the classical potential energy. The lowest energy conformation of the isolated molecule had dihedral angles in the range of helical RNA's and the sugar pucker was C3′ endo. This was used as the starting conformation in a packing search over orientation space, the dihedral angles being flexible in this step also. The packing search was restricted by constraints from our x-ray data, namely, (1) the dimensions of the monoclinic unit cell and its pseudo-C2 symmetry (the real space group is P21), (2) the location of the phosphorous atom, and (3) the orientation of the bases. In addition, a geometric function was devised to impose Watson-Crick base pairing. Thus, a trial structure could be sought without explicit inclusion of intermolecular potentials. An interactive computer graphics system was used for visualizing the calculated structures.The packing searches yielded two lowest energy schemes in which the molecules had the same conformation (similar to double-helical RNA) but different orientations within the unit cell. One of these was refined by standard x-ray methods to a discrepancy index of 14.4% in the C2 pseudocell. This served as the starting structure for the subsequent refinement in the real P21 cell.5
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Classical potential energy calculations were performed for the dinucleoside phosphates UpA and GpC. Two widely accessible low-energy regions of conformation space were found for the ω′, ω pair. That of lowest energy contains conformations similar to helical RNA, with ω′ and ω in the vicinity of 300° and 280°, respectively. All five experimental observations of crystalline GpC, two of ApU, and the helical fragment of ApApA fall in this range. The second lowest region has ω′ and ω at about 20° and 80°, respectively, which is in the general region of one experimentally observed crystalline conformer of UpA, and the nonhelical region of ApApA.It is concluded that GpC and ApU, which were crystallized as either sodium or calcium salts, are shielded from each other in the crystal by the water of hydration and are therefore free to adopt their predicted in vacuo minimum energy helical conformations. By contrast, crystalline UpA had only 1/2 water per molecule, and was forced into higher energy conformations in order to maximize intermolecular hydrogen bonding.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...