Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 2613-2621 
    ISSN: 0887-6266
    Keywords: poly(1-trimethylsilyl-1-propyne) ; poly(1-phenyl-1-propyne) ; blends ; hydrocarbons ; hydrogen ; mixed gas transport ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The gas permeation properties of poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and blends of PTMSP and PPP have been determined with hydrocarbon/hydrogen mixtures. For a glassy polymer, PTMSP has unusual gas permeation properties which result from its very high free volume. Transport in PPP is similar to that observed in conventional, low-free-volume glassy polymers. In experiments with n-butane/hydrogen gas mixtures, PTMSP and PTMSP/PPP blend membranes were more permeable to n-butane than to hydrogen. PPP, on the other hand, was more permeable to hydrogen than to n-butane. As the PTMSP composition in the blend increased from 0 to 100%, n-butane permeability increased by a factor of 2600, and n-butane/hydrogen selectivity increased from 0.4 to 24. Thus, both hydrocarbon permeability and hydrocarbon/hydrogen selectivity increase with the PTMSP content in the blend. The selectivities measured with gas mixtures were markedly higher than selectivities calculated from the corresponding ratio of pure gas permeabilities. The difference between mixed gas and pure gas selectivity becomes more pronounced as the PTMSP content in the blend increases. The mixed gas selectivities are higher than pure gas selectivities because the hydrogen permeability in the mixture is much lower than the pure hydrogen permeability. For example, the hydrogen permeability in PTMSP decreased by a factor of 20 as the relative propane pressure (p/psat) in propane/hydrogen mixtures increased from 0 to 0.8. This marked reduction in permanent gas permeability in the presence of a more condensable hydrocarbon component is reminiscent of blocking of permanent gas transport in microporous materials by preferential sorption of the condensable component in the pores. The permeability of PTMSP to a five-component hydrocarbon/hydrogen mixture, similar to that found in refinery waste gas, was determined and compared with published permeation results for a 6-Å microporous carbon membrane. PTMSP exhibited lower selectivities than those of the carbon membrane, but permeability coefficients in PTMSP were nearly three orders of magnitude higher. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 1925-1934 
    ISSN: 0887-6266
    Keywords: poly(1-trimethylsilyl-1-propyne) ; poly(1-phenyl-1-propyne) ; blends ; sorption ; hydrocarbons ; sorption models ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Propane and n-butane sorption in blends of poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-phenyl-1-propyne) (PPP) have been determined. Solubilities of propane and n-butane increased as the PTMSP content in the blends increased. This result is consistent with the higher free volume of PTMSP-rich blends and the better thermodynamic compatibility between PTMSP and these hydrocarbons. Propane and n-butane sorption isotherms were well described by the dual-mode model for sorption in glassy polymers. PTMSP/PPP blends are strongly phase-separated, heterogeneous materials. A noninteracting domain model developed for sorption in phase-separated glassy polymer blends suggests that sorption in the Henry's law regions (i.e., the equilibrium, dense phase of the blends) is consistent with the model. However, Langmuir capacity parameters in the blends are lower than predicted from the domain model, suggesting that the amount of nonequilibrium excess free volume associated with the Langmuir sites depends on blend composition. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 2209-2222 
    ISSN: 0887-6266
    Keywords: poly(1-trimethylsilyl-1-propyne) ; poly(1-phenyl-1-propyne) ; blends ; gas and vapor transport ; NMR ; Maxwell model ; Bruggeman model ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Pure gas and hydrocarbon vapor transport properties of blends of two glassy, polyacetylene-based polymers, poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(1-phenyl-1-propyne) [PPP], have been determined. Solid-state CP/MAS NMR proton rotating frame relaxation times were determined in the pure polymers and the blends. NMR studies show that PTMSP and PPP form strongly phase-separated blends. The permeabilities of the pure polymers and each blend were determined with hydrogen, nitrogen, oxygen, carbon dioxide, and n-butane. PTMSP exhibits unusual gas and vapor transport properties which result from its extremely high free volume. PTMSP is more permeable to large organic vapors, such as n-butane, than to small, permanent gases, such as hydrogen. PPP exhibits gas permeation characteristics of conventional low free volume glassy polymers; PPP is more permeable to hydrogen than to n-butane. In PTMSP/PPP blends, both n-butane permeability and n-butane/hydrogen selectivity increase as the PTMSP content of the blends increases. © 1996 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...