Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 36 (1990), S. 1562-1568 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Xenon-129 NMR is used to probe macroscopic distributions of aromatic molecules adsorbed in a packed bed of 1-μm NaY zeolite particles. Relative rates of guest transport through the intracrystalline (micro) and intercrystalline (macro) pores play a unique role in the axial distribution of sorbate molecules, such as hexamethylbenzene, in a zeolite powder. Xenon-129 NMR spectra show that a sharp HMB adsorption front advances through a bed of dehydrated NaY crystallites at 523 K. However, at 573 K or in the presence of coadsorbed water, HMB species disperse through the bed without forming a sharp boundary between adsorption zones.When guest transport is controlled by pseudosteady-state diffusion in the macropores, axial penetration of the bed by vapor-phase guest species occurs in a sharp adsorption front. A shrinking-core transport model then quantitatively estimates the intracrystalline diffusivities of HMB in dehydrated and partially hydrated NaY zeolite of 10-11 and 10-13 m2/s, respectively, at 523 K. Xenon-129 NMR proves to be a powerful tool for probing adsorbed guest distribution in zeolites, allowing relative time scales to be established for transport of molecular guests in NaY powders.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...