Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 588-602 
    ISSN: 0006-3592
    Keywords: endothelium ; genetic expression ; protein synthesis ; shear stress ; signal transduction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Mammalian cells responds to physical forces by altering their growth rate, morphology, metabolism, and genetic expression. We have studied the mechanism by which these cells detect the presence of mechanical stress and convert this force into intracellular signals. As our model systems, we have studied cultured human endothelial cells, which line the blood vessels and forms the interface between the blood and the vessel wall. These cell responds within minutes to the initiation of flow by increasing their arachidonic acid metabolism and increasing the level of the intracellular second messengers inositol trisphosphate and calcium ion concentration. With continued exposure to arterial levels of wall shear stress for up to 24 h, endothelial cells increase the expression of tissue plasminogen activator (tPA) and tPA messenger RNA (mRNA) and decrease the expression of endothelin peptide and endothelin mRNA. Since the initiation of flow also causes enhanced convective mass transfer to the endothelial cell monolayer, we have investigated the role of enhanced convection of adenosine trisphosphate (ATP) to the cell surface in eliciting a cellular response by monitoring cytosolic calcium concentrations on the single cell level and by computing the concentration profile of ATP in a parallel-plate flow geometry. Our result demonstrate that endothelial cells respond in very specific ways to the initiation of flow and that mass transfer and fluid shear stress can both play a role in the modulation of intracellular signal transduction and metabolism.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 631-644 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Electrophoresis of a solute through a column in which its transport is governed by the convection - diffusion equation is described. Approximate solutions to the convection - diffusion equation in the limit of small diffusion are developed using perturbation methods. The diffusion coefficient and velocity are assumed to be functions of space and time such that both undergo a sudden change from one constant value to another within a thin transition zone that itself translates with a constant velocity. Two cases are considered: (1) the thickness ∊f of the transition zone is negligible compared to the diffusional length scale, so the zone may be treated as a singular boundary across which the diffusion constant and velocity suffer discontinuous changes; (2) the transition zone is considerably wider than the diffusional length scale, so the diffusion coefficient and velocity, although sharply varying, are smooth functions of position and time. A systematic perturbation expansion of the concentration distribution is presented for case 1 in terms of the small parameter ∊ = 1/Pe. A lowest order approximation is given for case 2. A suitably configured system analyzed here can lead to progressive accumulation, or focusing, of the transported solute. The degree of focusing in case 1 scales with ∊-1, whereas in case 2 it scales with (∊f∊)-1/2, and thus increases much more weakly with increasing Pe. A separation based on this concept requires development of materials and devices that allow dynamic tuning of the mass-transport properties of a medium. This would make it possible to achieve progressive focusing and separation of solutes, such as proteins and DNA fragments, in electrophoretic media with an unprecedented degree of control.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 1366-1368 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...