Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0887-3585
    Keywords: monoclonal antibodies ; high-affinity combining sites ; MPD ; Effects of fluorescein binding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An antigen-binding fragment (Fab) from a murine monoclonal antibody (4-4-20) with high affinity for fluorescein was cocrystallized with ligand in polyethylene glycol (PEG) and 2-methl-2,4-pentanediol (MPD) in forms suitable for X-ray analyses. In MPD the affinity of the intact antibody for fluorescein was 300 times lower than the value (3.4 × 1010 M-1) obtained in aqueous buffers. This decreased affinity was manifested by the partial release of bound fluorescein when MPD was added to solutions of liganded Feb during crystallization trials, In PEG, the ligand remained firmly bound to the protein. The liganded Feb crystallized in the monoclinic space group P21 in PEG, with a = 58.6, b = 97.2, c = 44.5 Å and β = 95.2°. In MPD the space group was triclinic P1, with a = 58.3, b = 43.4, c = 42.3 Å, α = 83.9°, β = 87.6°, and γ = 84.5°. X-ray diffraction data were collected for both forms to 2.5-Å resolution. Surprisingly, the triclinic form of the liganed antifluorescyl Feb had the same space group, closely similar cell dimensions, and practically the same orientation in the unit cell as an unliganded Fab (BV04-01) with activity against single-stranded DNA.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: anti-ss-DNA autoantibody ; deoxynucleotide-Fab complex ; conformational changes in protein when ligand is bound ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Crystal structures of the Fabs from an autoantibody (BV04-01) with specificity for single-stranded DNA have been determined in the presence and absence of a trinucleotide of deoxythymidylic acid, d(pT)3. Formation of the ligand-protein complex was accompanied by small adjustments in the orientations of the variable (VL and VH) domains. In addition, there were local conformational changes in the first hypervariable loop of the light chain and the third hypervariable loop of the heavy chain, which together with the domain shifts led to an improvement in the complementarity of nucleotide and Fab. The sugar-phosphate chain adopted an extended and “open” conformation, with the base, sugar, and phosphate components available for interactions with the protein. Nucleotide 1 (5′-end) was associated exclusively with the heavy chain, nucleotide 2 was shared by both heavy and light chains, and nucleotide 3 was bound by the light chain. The orientation of phosphate 1 was stabilized by hydrogen bonds with serine H52a and asparagine H53. Phosphate 2 formed an ion pair with arginine H52, but no other charge-charge interactions were observed. Insertion of the side chain of histidine L27d between nucleotides 2 and 3 resulted in a bend in the sugar-phosphate chain. The most dominant contacts with the protein involved the central thymine base, which was immobilized by cooperative stacking and hydrogen bonding interactions. This base was intercalated between a tryptophan ring (no. H100a) from the heavy chain and a tyrosine ring (no. L32) from the light chain. The resulting orientation of thymine was favorable for the simultaneous formation of two hydrogen bonds with the backbone carbonyl oxygen and the side chain hydroxyl group of serine L91 (the thymine atoms were the hydrogen on nitrogen 3 and keto oxygen 4).
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...