Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 26 (1994), S. 827-845 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Haloacetyl, peroxynitrates are intermediates in the atmospheric degradation of a number of haloethanes. In this work, thermal decomposition rate constants of CF3C(O)O2NO2, CClF2C(O)O2NO2, CCl2FC(O)O2NO2, and CCl3C(O)O2NO2 have been determined in a temperature controlled 420 l reaction chamber. Peroxynitrates (RO2NO2) were prepared in situ by photolysis of RH/Cl2/O2/NO2/N2 mixtures (R = CF3CO, CClF2CO, CCl2FCO, and CCl3CO). Thermal decomposition was initiated by addition of NO, and relative RO2NO2 concentrations were measured as a function of time by long-path IR absorption using an FTIR spectrometer. First-order decomposition rate constants were determined at atmospheric pressure (M = N2) as a function of temperature and, in the case of CF3C(O)O2NO2 and CCl3C(O)O2NO2, also as a function of total pressure. Extrapolation of the measured rate constants to the temperatures and pressures of the upper troposphere yields thermal lifetimes of several thousands of years for all of these peroxynitrates. Thus, the chloro(fluoro)acetyl peroxynitrates may play a role as temporary reservoirs of Cl, their lifetimes in the upper troposphere being limited by their (unknown) photolysis rates. Results on the thermal decomposition of CClF2CH2O2NO2 and CCl2FCH2O2NO2 are also reported, showing that the atmospheric lifetimes of these peroxynitrates are very short in the lower troposphere and increase to a maximum of several days close to the tropopause. The ratio of the rate constants for the reactions of CF3C(O)O2 radicals with NO2 and NO was determined to be 0.64 ± 0.13 (2σ) at 315 K and a total pressure of 1000 mbar (M = N2). © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...