Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 1331-1339 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The α-chymotrypsin subunits immobilized under denaturing conditions (6 M urea or 1% SDS) on CNBr-activated Sepharose 4B, were found to interact with soluble chymotrypsin subunits with the formation of oligomers higher than dimers. Subunits immobilized under nondenaturing conditions form only dimers. The effects of several parameters, such as organic solvents, cations, and anions of the lyotropic series, on the associating properties of the immobilized derivatives were examined. The interaction between immobilized and free enzyme was shown to be specific because extraneous proteins and compounds were not bound by the derivatives. Chymotrypsinogen, studied analogously, did not show appreciable self-associating capacity. Chymotrypsin subunits immobilized under denaturing conditions and packed in a column proved to be suitable for the purification of chymotrypsin from both bovine and porcine pancreatic extracts. The “subunit exchange” chromatography of such extracts, carried out between pH 2.5 and 4, gave an eightfold purification with a 93% recovery of chymotryptic activity. The specific activity was ca. 12,000 Schwert and Takenaka units/mg. Only 6% of the tryptic activity was bound by the column. The capacity of the matrix, 6 mg chymotrypsin/mL, dropped to about 70% of the original value after
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 1-7 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of several factors on the activity and stability of alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and 20β-hydroxysteroid dehydrogenase, both free and immobilized on CNBr-activated Sepharose 4B, was investigated. Enzymes were im- mobilized under different conditions including various degrees of matrix activation, variable amounts of protein, in the presence, or in the absence of, additives (coenzymes, dithioth- reitol, salts). Activity recovery was in general satisfactorily high with 20β-hydroxysteroid dehydrogenase, low with glyceraldehyde-3-phosphatedehydrogenase, and markedly linked to the concentration of immobilized protein with alcohol dehydrogenase. In the latter case the advantageous stabilizing effect of high enzyme concentrations was notably diminished by the parallel decrease of the effectiveness factor. The effect of high concentrations of anions of the Hofmeister series was examined. It was found that 1M phosphate and 0.5M sulfate dramatically stabilize both free and immobilized enzymes against inactivation by temperature and urea. Km, values of apolar substrates were considerably lowered by the two anions while Km values of polar substrates were not affected. In some cases Vmax values also were influenced by high concentrations of these anions. The present results appear of interest particularly in view of enzyme utilization for analytical as well as for preparative purposes.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...