Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (10)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 29 (1984), S. 4237-4245 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Diblock copolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with varying compositions in the mole fractions of PS were prepared, and were obtained in particle state by different methods of precipitation. The morphology of the precipitates was studied by electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and viscometry. From these studies it was found that the precipitates of diblock copolymers have core-micelle structures, the components of the core and the surrounding micelle being different by precipitation histories.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 26 (1988), S. 1419-1428 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The solid state of the complex between poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO), and that between poly(methacrylic acid) (PMAA) and PEO formed via hydrogen-bonding was studied by differential-scanning calorimetric (DSC) and by Fourier-transform infrared (FT-IR) spectroscopic measurements. Melting temperature Tm and the degree of the crystallinity Xc of PEO in the systems PAA (or PMAA)/PEO blends obtained from aqueous or dimethyl sulfoxide (DMSO) medium were measured in various unit mol % of PEO ([PEO]100/{[PAA(or PMAA)] + [PEO]}) where [ ] is the unit mole concentration. It was found that 50 unit mol % of PEO is a critical composition, which gives new evidence for the 1 : 1 complex formation between PAA (or PMAA) and PEO. From the FT-IR spectroscopic analysis in conjunction with DSC measurements we also found that the effects of solvent and of hydrophobic interaction (due to the α-methyl group of PMAA) are the important factors controlling the complexation in the solution and solid systems. These factors also affect the crystallization behavior and the microstructure of the PAA (or PMAA)/PEO blend in solid state.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 28 (1990), S. 385-398 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Kinetics of the crystallization of poly(ethylene oxide) (PEO) from the PEO blends with syndiotactic, atactic, or isotactic poly(methyl methacrylate) (s-, a-, and i-PMMA) was investigated. The isothermal spherulitic growth rates were measured with an optical microscope. The influence of the composition of the blends, the tacticity of PMMA, and temperature on the growth rates were studied. Linear growth rates were observed regardless of the tacticity. The growth rates of spherulites are markedly reduced by a-PMMA and s-PMMA. However the growth rates of PEO are hardly influenced by i-PMMA. Such observations are interpreted by assuming that PEO forms miscible blends with a- and s-PMMA in the molten states, whereas it does not from with i-PMMA.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 24 (1986), S. 3171-3176 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The non-Newtonian intrinsic viscosities [η] of poly(γ-methyl L-glutamate) were measured in the helix-coil transition region under various conditions in this work. The helix content fH, which represents the degree of conformational transition, was obtained by using a polarimeter. Our experimental results show that the non-Newtonian behavior of the polypeptide is markedly affected by its conformation; i.e., the non-Newtonian effect becomes larger as fH increases. The effect of external pressure ΔP on [η] was studied carefully; [η] increases with fH when ΔP 〈 1.5 psi, but it decreases when ΔP 〉 1.5 psi and fH 〉 0.8. The reason for this result is considered in the text.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 27 (1989), S. 1721-1730 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: By using L-proline N-carboxyanhydride (LPNCA) and amino-group terminated poly(ethylene oxide) (ATPEO), an A-B-A-type [A = poly(L-proline) (PLP), B = poly(ethylene oxide) (PEO)] triblock copolymer (POP) was prepared which is water-soluble. In the POP, A = PLP is helical, and B = PEO is random coil. From the observations of the NMR spectra, specific optical rotation, and x-ray diffraction of the POP, it was found that the PLP component of the POP exists nearly as Form II PLP with trans-configuration, and interferes the crystal growth of PEO component, in solid state. With the addition of PMAA into an aqueous POP solution, dramatic decreases of reduced viscosity and pH are observed until the unit-mole-concentration-ratio (UMCR) [PMAA]/[POP] reaches its value of unity, while a distinct increase in turbidity appears. This shows a 1 : 1 interpolymer complex formation between PMAA and POP in aqueous medium through hydrogen bonding. The curves of viscosity, pH, and turbidity versus UMCR [PMAA]/[POP] show breaks at [PMAA]/[POP] = 0.3, suggesting the selective complexation of PLP component (ca. 30 unit-mol %) of POP with PMAA. The x-ray diffraction curve of the complex POP/PMAA shows entirely no diffraction patterns, indicating that the ordered POP structure (mainly due to that of PLP component) is completely destroyed owing to the complexation between POP and PMAA.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 31 (1993), S. 3377-3385 
    ISSN: 0887-624X
    Keywords: poly(L-proline) ; hydrogen bonding ; complex formation ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The complex formation between helical poly-L-glutamic acid (PLGA) and helical poly-L-proline (PLP) was studied in a methanol-water (2 : 1) cosolvent and a propanol-water cosolvent (9 : 1). Reduced viscosity, circular dichroism, pH, and molar absorptivity were measured. The experimental results exhibit that the interpolymer complex was formed between helical PLGA and helical PLP through hydrogen bonding. When the complex was formed the unit mole ratio of PLGA : PLP(II) is 2 : 1 and PLGA : PLP(I) is 1.5 : 1, the ability of complex formation of PLP (II) with PLGA is better than that of PLP(I). On complexation the conformations of PLGA and PLP change and this change is more enhanced in the PLGA-PLP(II) than the PLGA-PLP(I) complex; its cause is studied. © 1993 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 27 (1989), S. 9-19 
    ISSN: 0887-6258
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 27 (1989), S. 161-165 
    ISSN: 0887-6258
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 27 (1989), S. 4109-4117 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Interpolymer complex formation between poly(L-proline) (PLP) with helical structure and poly(methacrylic acid) (PMAA) with random-coil structure through hydrogen bonding in aqueous medium has been studied by several experimental techniques, e.g., viscometry, turbidimetry, potentiometry, conductometry, scanning electron microscopy, and x-ray diffraction methods.The decreases in reduced viscosity of the solution on addition of an increasing quantity of PLP to a constant amount of PMAA reveals the formation of a complex between PLP and PMAA. The minimum in reduced viscosity at a unit-mole ratio [PLP]/[PMAA] = 1.0 suggests a 1 : 1 complex formation. A distinct change in the curves for turbidity, pH, and conductance versus [PLP]/[PMAA] supports this conclusion. A scanning electron micrograph for the 1 : 1 PLP-PMAA complexes shows that the PLP/PMAA complex has the shape of entangled long fibers. An x-ray diffraction pattern for the PLP/PMAA complexes gives no diffraction patterns which appear in pure PLP, indicating the destruction of the helical structure of PLP due to the interpolymer complexation. Mixtures of PMAA with poly(γ-hydroxy-L-proline) (PHLP) which has a similar conformation as PLP, but involves intra- or intermolecular hydrogen bonds, has also been investigated by vicometry measurements. The reduced viscosity of a solution of the mixed polymers increases with increasing [PHLP], indicating no complex formation. All the results reveal that the magnitude and the nature of the forces acting in the polymers play an important role in interpolymer complexation.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 28 (1990), S. 1273-1288 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The conformational transition of Form II → Form I of Poly-L-proline and the intermolecular aggregation of the product Form I during and after the transition in the HOAc-propanol mixture solvent were studied, the ratio of HOAc:propanol being changed as 1:9, 1:6, and 1:4 v/v. For the study, the viscosity, light scattering, and dynamic light scattering of the system were measured. The experimental results exhibit that the concentration of Form II promotes the end-to-end type aggregation during and after the transition Form II → I. The extent of the aggregation is reduced in the order of the ratios of HOAc/propanol 1:9, 1:6, and 1:4 v/v. The end-to-end type aggregation is also reduced at higher temperatures. It was also observed that the end-to-end type aggregation occurs abruptly and strongly after the transition of Form II → I occurred to some extent. The point of the abrupt occurrence depends on the solvents and temperature. The light scattering and translational diffusion-coefficient measurements showed also similar phenomena. It was also observed that the side-by-side type aggregation occurs when the initial concentration of Form II of poly-L-proline is relatively small, and the transition temperature is relatively high (35 and 45°C). All the above mentioned experimental results are explained by a simple principle described in the text.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...