Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Chloride channels  (2)
  • Chloride channel conductance  (1)
  • 1
    ISSN: 1432-1912
    Schlagwort(e): Skeletal muscle ; Chloride channel conductance ; Taurine binding site ; Taurine analogues ; Structure-activity relationship
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract In rat skeletal muscle, taurine was proposed to interact with a low affinity binding site on sarcolemmal phospholipids near chloride channel, increasing chloride conductance (GCI). In an attempt to evaluate the structure-activity relationship between taurine and its binding site, a series of N-azacycloalkenyl analogues of taurine (A: N-(1′aza-cyclopenten-2′yl)-2-aminoethane sulfonic acid; B: N-(1′-aza-cyclopenten-2′-yl)-2-aminoethane sulfonic acid; C: N-(1′aza-cyclopenten-2′-yl)-3-amino-propane sulfonic acid; D: N-(1′aza-cyclopenten-2′-yl)-3-aminopropane sulfonic acid) have been synthetized and tested in vitro on rat extensor digitorum longus (EDL) muscle. In spite of the presence of a bulky and lipophilic 5 or 7 membered heterocycle linked to the taurine amino group, analogues A and B determined an increase of GCI, although less potently than taurine. Also 3-aminopropane sulfonic acid (homotaurine), tested in comparison, showed less activity in increasing GCI with respect to taurine, probably for the increased distance between charged groups. Taurine analogues C and D, which differ from compounds A and B for an additional methylene group, showed much lower activity in increasing GCI. It has been reported that guanidinoethane sulfonate (GES) displaces taurine from the low affinity site on sarcolemma by only 7%. This compound, characterized by lower charge density on the guanidinium cationic head, applied in vitro on EDL muscle, show reduced taurine-like activity in increasing GCl. Our results support the hypothesis that the effect of taurine on muscle GCI is due to a specific binding on a low affinity site on sarcolemma and that charge delocalization reduces the binding probability more than the substitution of the primary amino group or the increased distance between charged groups.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Pflügers Archiv 427 (1994), S. 80-85 
    ISSN: 1432-2013
    Schlagwort(e): Rat skeletal muscle ; Aging ; Chloride channels ; Phorbol esters ; Protein kinases ; Cholera toxin ; G protein pathways ; Calcium ionophore A23187
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract By the use of pharmacological tools, we tested the hypothesis that age-related alterations in the regulatory pathways of chloride channels might contribute to the lowered chloride conductance (G Cl) found in skeletal muscle of aged rats. The restingG Cl of extensor digitorum longus (EDL) muscles from adult rats either young (3–4 months old) or aged (29 months old) was measured by means of computerized intracellular microelectrode recordings. In EDL muscle from 3 to 4-month-old rats, 4-β-phorbol 12,13-dibutyrate (4-β-PDB), a direct activator of protein kinase C (PKC), decreasedG Cl in a concentration-dependent manner. The same effect was exerted by cholera toxin. The effects of both the phorbol ester and cholera toxin were inhibited by staurosporine, thus indicating that either direct or indirect (via G protein) activation of PKC accounts for the decrease ofG Cl. An increase of cytosolic Ca2+ by the ionophore A23187 also significantly decreasedG Cl by 25%. In EDL muscles from aged rats, 4-β-PDB was 20-fold more potent in blockingG Cl than in muscles from younger controls, and the ionophore blockedG Cl by 40%. On the other hand, cholera toxin was ineffective. Our findings support the hypothesis that in fast-twitch muscle the regulation of chloride channels by PKC and Ca2+ is a target of the aging process.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-2013
    Schlagwort(e): Rat skeletal muscle ; Development ; Chloride channels ; Anthracene 9-carboxylic acid ; Contractile properties
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract A specific chloride channel blocker, anthracene 9-carboxylic acid was locally applied for 8–9 days on the extensor digitorum longus muscle of 7–8-day-old rats. The effects of chronic anthracene 9-carboxylic acid treatment on muscle development, were evaluated in vitro on the electrical properties with intracelluar microelectrodes and in vivo on the contractile parameters by recording isometric concentractions. Our data show that the treatment prevented the normal development of chloride conductance so that by 15 days of age it was 45% lower in fibers of the treated muscles when compared to age-related control fibers. Potassium conductance was not significantly changed by the treatment. In vivo the anthracene-9-carboxylic acid-treated muscles were slower to contract and relax; having a 20% slower time to peak twitch force and time of half relaxation. These muscles were also 32% less fatiguable with respect to the controls. Moreover, in most of the treated muscles tetanic contractions during high-frequency stimulation were not maintained. The block of chloride channels in developing striated fibers appears to affect the differentiation of specific properties of fast skeletal muscle such as the speed of contraction.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...