Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Chlorophyll fluorescence ; Photoinhibition ; Photosynthesis ; Temperature stress ; Ulva
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have investigated the diurnal response of photosynthesis and variable photosystem II (PSII) chlorophyll fluorescence at 77 K for thalli of the chlorophyte macroalga, Ulva rotundata, grown in outdoor culture and transplanted to an intertidal sand flat in different seasons. The physiological response in summer indicated synergistic effects of high PFD and aerial exposure, the latter probably attributable to temperature, which usually increased by 8 to 10° C during midday emersion. Except at extreme emersed temperatures in summer (38° C), the light-saturated photosynthesis rate (Pm) did not decline at midday. In contrast, light-limited quantum yield of photosynthetic O2 exchange (τ) and the ratio of variable to maximum fluorescence yield (Fv/Fm) reversibly declined during midday low tides in all seasons. Shade-grown thalli exhibited a fluorescence response suggestive of greater photodamage to PSII, whereas sun-grown thalli had greater photoprotective capacity. The fluorescence decline was smaller when high tide occurred at midday, and was delayed during morning cloudiness. These results suggest that the diurnal response to PFD in this shallow water species is modified by tidal and meteorological factors. U. rotundata has a great capacity for photoprotection which allows it to tolerate and even thrive in the harsh intertidal environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Chlorophyll fluorescence ; Photoinhibition ; Photoprotection ; Ulva (photosynthesis)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The relationships between photoinhibition and photoprotection in high and low-light-grown Ulva were examined by a combination of chlorophyll-fluorescence-monitoring techniques. Tissues were exposed to a computer-controlled sequence of 5-min exposures to red light, followed by 5-min darkness, with stepwise increases in photon flux. Coefficients of chlorophyll fluorescence quenching (1−qP and NPQ) were calculated following a saturating pulse of white light near the end of each 5-min light treatment. Dark-adapted chlorophyll fluorescence parameters (F0 and FV/FM) were calculated from a saturating pulse at the end of each 5-min dark period. Low-light-grown Ulva showed consistently higher 1−qP, i.e. higher reduction status of Q (high primary acceptor of photosystem II), and lower capacity for nonphotochemical quenching (NPQ) at saturating light than did high-light-grown plants. Consequently, low-light plants rapidly displayed photoinhibitory damage (increased F0) at light saturation in seawater. Removal of dissolved inorganic carbon from seawater also led to photoinhibitory damage of high-light-grown Ulva at light saturation, and addition of saturating amounts of dissolved inorganic carbon protected low-light-grown plants against photoinhibitory damage. A large part of NPQ was abolished by treatment with 3 mM dithiothreitol and the processes so inhibited were evidently photoprotective, because dithiothreitol treatment accelerated photoinhibitory damage in both low- and high-light-grown Ulva. The extent of photoinhibitory damage in Ulva was exacerbated by treatment with chloramphenicol (1 mM) without much effect on chlorophyll-quenching parameters, evidently because this inhibitor of chloroplast protein synthesis reduced the rate of repair processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...