Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 251 (1989), S. 237-240 
    ISSN: 0014-5793
    Keywords: (Pseudomonas) ; Anaerobic degradation ; Aromatic compound ; Benzoyl-CoA:(acceptor) 4-oxidoreductase (hydroxylating) ; Hydroxybenzoyl-CoA, 4- ; Phenol
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 148 (1987), S. 213-217 
    ISSN: 1432-072X
    Keywords: Anaerobic degradation ; Aromatic compounds ; Phenol ; Cresol ; 4-Hydroxybenzoate ; Denitrification ; Pseudomonas sp.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 152 (1989), S. 273-279 
    ISSN: 1432-072X
    Keywords: Alicyclic compounds ; Denitrification ; Cyclohexanol dehydrogenase ; Cyclohexanone dehydrogenase ; 2-Cyclohexenone hydratase ; 3-Hydroxycyclohexanone dehydrogenase ; 1,3-Cyclohexanedione hydrolase ; Phenol ; Aromatization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The enzymes involved in the anaerobic degration of cyclohexanol were searched for in a denitrifying Pseudomonas species which metabolizes this alicyclic compound to CO2 anaerobically. All postulated enzyme activities were demonstrated in vitro with sufficient specific activities. Cyclohexanol dehydrogenase catalyzes the oxidation of the substrate to cyclohexanone. Cyclohexanone dehydrogenase oxidizes cyclohexanone to 2-cyclohexenone. 2-Cyclohexenone hydratase and 3-hydroxycyclohexanone dehydrogenase convert 2-cyclohexenone via 3-hydroxycyclohexanone into 1,3-cyclohexanedione. Finally, the dione is cleaved by 1,3-cyclohexanedione hydrolase into 5-oxocaproic acid. Some kinetic and regulatory properties of these enzymes were studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: ATP-citrate lyase ; Citric acid cycle ; Acetate oxidation ; ATP synthesis via substrate level phosphorylation ; Sulfate-reducing bacteria ; Desulfobacter postgatei
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Desulfobacter postgatei is an acetate-oxidizing, sulfate-reducing bacterium that metabolizes acetate via the citric acid cycle. The organism has been reported to contain a si-citrate synthase (EC 4.1.3.7) which is activated by AMP and inorganic phosphate. It is show now, that the enzyme mediating citrate formation is an ATP-citrate lyase (EC 4.1.3.8) rather than a citrate synthase. Cell extracts (160,000xg supernatant) catalyzed the conversion of oxaloacetate (apparent K m=0.2 mM), acetyl-CoA (app. K m=0.1 mM), ADP (app. K m=0.06 mM) and phosphate (app. K m=0.7 mM) to citrate, CoA and ATP with a specific activity of 0.3 μmol·min-1·mg-1 protein. Per mol citrate formed 1 mol of ATP was generated. Cleavage of citrate (app. K m=0.05 mM; V max=1.2 μmol · min-1 · mg-1 protein) was dependent on ATP (app. K m=0.4 mM) and CoA (app. K m=0.05 mM) and yielded oxaloacetate, acetyl-CoA, ADP, and phosphate as products in a stoichiometry of citrate:CoA:oxaloacetate:ADP=1:1:1:1. The use of an ATP-citrate lyase in the citric acid cycle enables D. postgatei to couple the oxidation of acetate to 2 CO2 with the net synthesis of ATP via substrate level phosphorylation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Desulfobacter hydrogenophilus ; Sulfate-reducing bacteria ; Autotrophy ; Citric acid cycle ; ATP-citrate lyase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The strict anaerobe Desulfobacter hydrogenophilus is able to grow autotrophically with CO2, H2, and sulfate as sole carbon and energy sources. The generation time at 30°C under autotrophic conditions in a pure mineral medium was 15 h, the growth yield was 8 g cell dry mass per mol sulfate reduced to H2S. Enzymes of the autotrophic CO2 assimilation pathway were investigated. Key enzymes of the Calvin cycle and of the acetyl CoA pathway could not be found. All enzymes of a reductive citric acid cycle were present at specific activities sufficient to account for the observed growth rate. Notably, an ATP-citrate lyase (1.3 μmol · min-1 · mg cell protein-1) was present both in autotrophically and in heterotrophically grown cells, which was rapidly inactivated in the absence of ATP. The data indicate that in D. hydrogenophilus a reductive citric acid cycle is operating in autotrophic CO2 fixation. Since other autotrophic sulfate reducers possess an acetyl CoA pathway for CO2 fixation, two different autotrophic pathways occur in the same physiological group.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...