Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Neuronal uptake ; Initial rates of amine uptake ; Lag period for amine uptake ; Cocaine ; Rabbit heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Hearts were obtained from normal or reserpine-pretreated rabbits and perfused at a constant rate (3.6 ml·g−1·min−1) with Tyrode's solution containing 14C- or 3H-sorbitol and various concentrations of 3H-(−)noradrenaline (NA), 14C-(+)NA or 3H-(±)metaraminol; when NA was used, monoamine oxidase and catechol-O-methyl transferase were inhibited. During perfusion for 2 min the arterio-venous difference for 3H and 14C activity (and in this way the removal of amine and sorbitol from the perfusion fluid) was determined at intervals of 5 s. The uptake of amine into intracellular spaces of the heart was obtained by subtraction of the removal of sorbitol from that of amine; it was cumulatively added and plotted against time (uptake curve). Uptake was overwhelmingly neuronal. 2. The uptake curves were sigmoidal: after a brief initial lag period, uptake curves became linear; there-after, the slope of the curves decreased. The last phase of divergence from linearity occurred the earlier and was the more pronounced, the higher the amine concentration. It was interpreted to indicate that neuronal efflux of amine then began to reduce net uptake. 3. From the slope of the linear phase of the uptake curves initial rates of amine transport were obtained. They were saturable with increasing amine concentrations and obeyed Michaelis-Menten kinetics. The apparent K m values of the three amines were similar in magnitude and ranged from 2.9 to 5.9 μM. Uptake was stereoselective in that the V max of (+)NA was significantly lower than that of (−)NA. Pretreatment with reserpine affected neither the K m nor the V max for uptake. Cocaine was a potent competitive inhibitor of amine transport (K i=0.5–1.0 μM). 4. The intercept of the linear phase of the uptake curves on the time axis (t lag) (corrected for the time necessary for transit through the dead space) was taken as a measure of the lag period. It declined when uptake was progressively saturated (or inhibited) by increasing substrate (or cocaine) concentrations. Moreover, t lag was always linearly correlated with the fraction of amine removed from the perfusion fluid. These findings indicate that the equilibration of the uptake sites with the substrate concentration in the perfusion fluid is delayed by the uptake process itself, especially under low saturation conditions (i.e., when S〈K m).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 267 (1970), S. 383-398 
    ISSN: 1432-1912
    Keywords: Cocaine ; Cold-Stored Tissues ; Neuronal Uptake of Nor-adrenaline ; Nictitating Membrane of Cat ; Supersensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Experiments were carried out on fresh isolated cat nictitating membranes as well as on muscles stored in the cold for 7 days. Storage reduced the cocaine-induced supersensitivity to (−)-noradrenaline but did not abolish it it also reduced responses to tyramine, and about halved the noradrenaline content of the tissue. Cocaine failed to potentiate responses of fresh or of stored muscles to the methoxamine (which is not taken up by adrenergic nerves). The incubation with 2.5 ml of 100 ng/ml of (−)-noradrenaline (in the presence of the inhibitor of catechol-O-methyl transferase), fresh muscles removed noradrenaline from the incubation medium at a rate of about 70 ng per gram of tissue per min; 10 Μg/ml of cocaine reduced rate of removal by 81%. Muscles stored in the cold removed less noradrenaline from the medium (about 45 ng/g×min−1) than fresh ones, and cocaine reduced the rate of removal by 56%. The neuronal uptake mechanism of the nictitating membrane does not seem to be stereoselective, since the rate of removal of (+)-noradrenaline from the incubation medium was similar to that of the (−)-isomer. It is concluded that cold storage of the muscle abolishes neither the neuronal uptake of noradrenaline nor the ability of cocaine to impair this uptake; however, both parameters were reduced. Since the sensitizing action of cocaine is similarly reduced, there is no reason to doubt the causal relation between impairment by cocaine of neuronal uptake and ensuing supersensitivity to (−)-noradrenaline.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 275 (1972), S. 69-82 
    ISSN: 1432-1912
    Keywords: Cocaine ; Nictitating Membrane ; Uptake Theory ; Inhibition of Uptake ; Supersensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Pairs of smooth muscles isolated from the nictitating membrane of reserpine-pretreated cats were incubated four times with 1.2 ml of Krebs' solution containing 10 ng/ml of 3H-(±)-noradrenaline for 7.5 min each (in the presence of ascorbic acid and EDTA to prevent autoxidation and of U-0521 to block COMT). The appearance of deaminated 3H-catechols in the bath was measured and regarded as a measure of neuronal uptake. 2. Cocaine caused a concentration-dependent inhibition of the rate of deamination; the ID50 was 5.62 μM. 3. Cocaine caused a concentration-dependent increase in responses of the isolated muscles to 0.059 μM (−)-noradrenaline with a maximum increase of about 115 times normal. 4. The results were applied to the model proposed by Maxwell et al. (1966). The agreement between the expected and observed relationship between rate of uptake and degree of supersensitivity was satisfactory. Apparently, the effect of cocaine on the nictitating membrane is predominatly or entirely prejunctional. 5. The results indicate that the true K m for noradrenaline and the true K i for cocaine are considerably smaller than the apparent Km and Ki values obtained with conventional methods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 299 (1977), S. 225-238 
    ISSN: 1432-1912
    Keywords: Stereoselective metabolism of noradrenaline ; Neuronal efflux ; Cocaine ; Phenoxybenzamine ; Rat vas deferens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The metabolism of 3H-(-)- and 3H-(±)-noradrenaline (NA) was studied in the isolated rat vas deferens either under conditions of uptake or of efflux of the amine. Any differences obtained between 3H-(-)-and 3H-(±)NA as substrate were interpreted as being a reflection of differences between the two isomers of the amine. 2. Uptake experiments (0.13 μM; 7.5 min) showed that neuronal mechanisms of amine disposition prevail over extraneuronal ones. Thus, most of the metabolites of 3H-NA formed during incubation with the amine (including the O-methylated products) were of neuronal origin. The acid deaminated metabolite 3,4-dihydroxymandelic acid (DOMA), tended to be much better retained by the tissue than the neutral deaminated metabolite, 3,4-dihydroxyphenylethyleneglycol (DOPEG). While neuronal uptake exhibited no stereoselectivity, a pronounced stereoselectivity was found for monoamine oxidase (MAO) [(-)NA〉 (+)NA] as well as for the enzymes which are in series with MAO, namely, aldehyde reductase and aldehyde dehydrogenase [(-)DOPEG〉 (+)DOPEG; (-)DOMA 〈(+)DOMA]. 3. After about 2 h of washout, the efflux of radioactivity from the tissue [which was previously incubated for 30 min with 1.2 μM of either 3H-(-)- or 3H-(±)NA] originated from one neuronal compartment with no stereoselectivity of the rate constant for the efflux of total tritium. The rate-limiting step for the neuronal efflux of tritium resided either in the net efflux of amine from the storage vesicles (normal tissues) or in the net efflux across the axonal membrane (tissues with the amine metabolizing enzymes inhibited). The effects of cocaine and phenoxybenzamine on the neuronal efflux of tritiated compounds strongly depended on the intraneuronal distribution of the 3H-amine. The results indicate that cocaine has only one site of action (neuronal uptake), while phenoxybenzamine exerts reserpine-like as well as cocaine-like effects. 4. The neuronal efflux of tritium from normal tissues preloaded with 3H-(-)- or 3H-(±)NA consisted mainly of amine metabolites (90% of the total; most of this was DOPEG). Since after 2 h of washout the tissue contained hardly any metabolites, these metabolites did not represent pre-formed metabolites (formed during the period of preloading) but newly formed metabolites resulting from the catabolism of the neuronally stored amine. This catabolism was brought about through the activity of presynaptic enzymes and was stereoselective in that more DOPEG, less DOMA and less O-methylated metabolites were formed from (-)-than from (+)NA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 339 (1989), S. 65-70 
    ISSN: 1432-1912
    Keywords: Cl−-dependence ; Neuronal uptake ; Inhibition of neuronal uptake ; Desipramine ; Cocaine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary (1) Vasa deferentia obtained from reserpine-pretreated rats were exposed to 0.15 μmol 1−1 3H-(−)noradrenaline (with monoamine oxidase and catechol-O-methyltransferase being inhibited) and initial rates of the neuronal 3H-noradrenaline uptake as well as IC50 values for inhibition of uptake by desipramine, cocaine or (−)metaraminol determined at various external Cl− concentrations (0–145 mmol 1−1) and a fixed high Na+ concentration (145 mmoll−1). (2) When the Cl− concentration in the medium was decreased neuronal uptake fell. As far as Cl− concentrations ranging from 10 to 145 mmol 1−1 are concerned, the dependence of uptake on Cl− obeyed Michaelis-Menten kinetics with an apparent K m and V max of 6.2 mmol 1−1 and 116 pmol g−1 min−1, respectively. At Cl− concentrations below 10 mmol l−1, uptake was higher than expected from the values of K m and V max, and even in the nominal absence of Cl− from the medium a remainder of neuronal uptake was still detectable. Evidence is presented to show that, on incubation at Cl− concentrations below 10 mmol l−1, intracelluar Cl− leaks out, so that the actual Cl− concentrations in the extracellular fluid are probably higher than in the medium. (3) The potencies of desipramine and cocaine for inhibition of neuronal uptake were markedly dependent on the Cl− concentration in the medium, but the type of Cl− dependence differed. While the IC50 for desipramine decreased, that for cocaine increased with increasing Cl− concentration (2–145 mmol l−1). The value of IC50 for cocaine and that of 1/IC50 for desipramine approached saturation (with an apparent Hill coefficient of about unity) when plotted against the Cl− concentration; half-maximum values were observed at Cl− concentrations of 9 and 24 mmol l−1, respectively. (4) (−)Metaraminol (an alternative substrate of the noradrenaline carrier) remained equally potent in inhibiting neuronal uptake when the Cl− concentration was decreased from 145 to 2 mmol l−1. However, when Cl− was omitted from the medium, the IC50 for (−)metaraminol increased. Hence, the C−-dependence of the potency of (−)metaraminol appears to be restricted to very low extracellular Cl− concentrations. (5) It is concluded that not only the neuronal uptake process itself, but also its inhibition by desipramine and cocaine are highly Cl−-dependent. Since desipramine and cocaine differ with respect to the type of Cl−-dependence of their inhibitory potency, they are likely to act by combining with distinctly different states of the noradrenaline carrier. It is suggested that desipramine interacts with the carrier loaded with Cl− while cocaine is capable of interacting with its Cl−-free state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 344 (1991), S. 720-727 
    ISSN: 1432-1912
    Keywords: Nitric oxide (EDRF) ; l-NG-Monomethyl-arginine ; Noradrenaline release ; Adrenaline release ; Anaesthetized rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study in the anaesthetized rabbit aimed at determining the role of nitric oxide (NO), the putative endothelium-derived relaxing factor, in the regulation of haemodynamics and the release into plasma of noradrenaline and adrenaline. Specific inhibition of NO formation was achieved by i.v. bolus injection of l-NG-monomethyl-arginine (l-NMMA; 3–100 mg kg−1). Phenylephrine was infused i.v. at constant rates (2.5–20 μg kg−1 min−1) in order to assess baroreflex-mediated changes in release due to direct peripheral vasoconstriction. Rates of noradrenaline and adrenaline release into plasma were determined by the radio-tracer technique. l-NMMA, but not d-NMMA, dose-dependently increased mean arterial pressure and total peripheral vasular resistance, whereas both heart rate and cardiac output decreased concomitantly. The corresponding ED50 values for l-NMMA ranged from 11.2 to 18.5 mg kg−1. Inhibition of NO formation by l-NMMA as well as phenylephrine infusion caused decreases in the plasma clearance of noradrenaline and adrenaline which were correlated with the drug-induced decreases in cardiac output. Both l-NMMA and phenylephrine reduced the rate of noradrenaline release into plasma as they increased total peripheral resistance. Moreover, the curvilinear relationship between these two parameters obtained for l-NMMA was virtually identical to that produced by phenylephrine, indicating that the reduction in noradrenaline release by l-NMMA is mediated solely by the baroreflex. From the l-NMMA-induced maximum inhibition of noradrenaline release, it is concluded that the counter-regulation against peripheral vasodilation by NO accounts for 69% of basal noradrenaline release. The baroreflex-sensitive component of noradrenaline release, as determined by the maximum inhibition of release induced by phenylephrine, amounted to 83% of basal release. l-NMMA also reduced the release into plasma of adrenaline; the maximum inhibition of release was 52%. However, when related to total peripheral resistance, this inhibition of adrenaline release was more pronounced than that induced by phenylephrine, suggesting that the formation of endogenous NO facilitates the release of adrenaline.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 334 (1986), S. 397-402 
    ISSN: 1432-1912
    Keywords: Neuronal noradrenaline carrier ; Inhibition of transport-Na+-dependence ; Desipramine ; Cocaine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Vasa deferentia obtained from reserpine-pretreated rats were incubated (monoamine oxidase and catechol-O-methyltransferase inhibited) in media containing various concentrations of3H-(−)noradrenaline and Na+ and initial rates of the neuronal uptake of3H-noradrenaline measured both in the absence and presence of uptake inhibitors after 1 min of incubation. 2. When rates of uptake were determined at various3H-noradrenaline (1.0–12.2 μmol/l) and two fixed Na+ concentrations (25 and 140 mmol/l), the inhibition of uptake produced by (+)amphetamine, (−)metaraminol, desipramine, nomifensine and cocaine was competitive with respect to3H-noradrenaline at both Na+ concentrations. While theK i for (+)amphetamine, (−)metaraminol desipramine and nomifensine increased when the Na+ concentration was lowered, that for cocaine decreased. 3. When the Na+ concentration was varied (10–140 mmol/l) and the3H-noradrenaline concentration held constant (1.2 μmol/l), (+)amphetamine, (−)metaraminol, nomifensine and desipramine acted as mixed-type inhibitors with respect to Na+, and the inhibition of uptake produced by these drugs was the more pronounced, the higher the Na+ concentration. On the other hand, cocaine was competitive with Na+ and the inhibition produced by this drug was the more pronounced, the lower the Na+ concentration. 4. It is concluded that the inhibitors of neuronal uptake tested here act in dependence on the external Na+ concentration. Desipramine and nomifensine resemble alternative amine substrates in being more potent at high than at low Na+ concentrations. On the other hand cocaine is more potent at low than at high Na+ concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1912
    Keywords: Noradrenaline clearance ; Fractional noradrenaline extraction ; Differently 3H-labelled noradrenaline ; Plasma DOPEG ; Anaesthetized rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Rabbits were anaesthetized with urethane/chloralose and infused intravenously with trace amounts of 3H-2,5,6-, 3H-7,8- or 3H-7-(-)noradrenaline either without or with unlabelled (\t-)noradrenaline being simultaneously infused (0.2 gg kg\t-1 min\t-1). To obtain clearance values and extraction ratios for the pulmonary, systemic and total circulation, steady-state concentrations of infused noradrenaline were determined in mixed central venous (C v) and arterial (C v) plasma. Heart rate and blood pressure were recorded via the carotid artery, and the dye dilution method was used to determine the cardiac output of plasma. 2. The simultaneous infusion of unlabelled noradrenaline, which increased plasma levels of noradrenaline by a factor of 5, had no significant effect on either heart rate, blood pressure or cardiac output (when determined at steady state of the noradrenaline infusion). 3. The simultaneous infusion of unlabelled noradrenaline did not affect the clearance values of any of the three type of 3H-noradrenaline. Moreover, the clearances of the various types of 3H-noradrenaline were virtually identical and agreed with that of unlabelled noradrenaline. However, the clearance of labelled and unlabelled noradrenaline from arterial plasma was 1.15 times higher than that from central venous plasma. This factor corresponded to the ratio of C v/C a and pointed towards net removal of noradrenaline from the pulmonary circulation. 4. The fractional pulmonary extractions [1 - (C a/C a)] of the three types of 3H-noradrenaline did not differ from each other and were not affected by the simultaneous infusion of unlabelled noradrenaline. Moreover, the fractional pulmonary extraction of endogenous noradrenaline resembled that of infused 3H- and unlabelled noradrenaline, suggesting that there was little, if any, overflow of endogenous noradrenaline into plasma during passage through the pulmonary circulation. 5. From the clearance of noradrenaline from mixed central venous plasma, its fractional pulmonary extraction and the cardiac output of plasma estimates of the following steady-state kinetic parameters for infused noradrenaline were obtained: pulmonary, systemic as well as total body clearance (13.4, 67.9, 72.6 ml kg\t-1 min\t-1) and fractional extraction (0.128, 0.650, 0.695). The rates at which infused noradrenaline was eliminated from the pulmonary and systemic circulation amounted to 18.4 and 81.6% of the total body elimination rate, respectively. 6. The infusion of unlabelled noradrenaline increased plasma levels of 3,4-dihydroxyphenylglycol (DOPEG) by a factor of 1.2. DOPEG concentrations in arterial plasma were 4.9% higher than those in mixed central venous plasma. Hence, there was some net formation of DOPEG in the pulmonary circulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 340 (1989), S. 726-732 
    ISSN: 1432-1912
    Keywords: 3,4-Dihydroxyphenylglycol ; Presynaptic noradrenaline metabolism ; Noradrenaline infusion ; Desipramine ; Anaesthetized rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary (1.) The purpose of this study was to investigate the role of neuronal uptake in the appearance in plasma of the primary noradrenaline metabolite 3,4-dihydroxyphenylglycol (DOPEG). To this end, steady-state changes in mixed central-venous plasma concentrations of noradrenaline and DOPEG produced by noradrenaline infusions or by changes in sympathetic tone were determined in anaesthetized rabbits either under control conditions or after treatment with desipramine (2 mg kg−1). The steady-state kinetics of infused DOPEG were also evaluated. (2.) Infused DOPEG (2.9 nmol kg−1 min−1 i.v. for 75 min) reached steady-state concentrations in plasma within less than 30 min, disappeared from plasma with a half-life of 2.3 min and showed a total-body plasma clearance of 84.0 ml kg−1 min−1 (3.) Constant-rate infusions of noradrenaline (1.2–5.9 nmol kg−1). (min−1 i.v. for 75 min) produced increases in plasma noradrenaline and DOPEG concentrations which were linearly related to the rate of noradrenaline infusion. Thus, the plasma clearance of infused noradrenaline (75.8 ml kg−1). min−1 as well as the increase in plasma DOPEG expressed in % of that in plasma noradrenaline (9.4%) was virtually independent of the noradrenaline infusion rate. (4.) Desipramine reduced the plasma clearance of infused noradrenaline by 35.4% and the increment in plasma DOPEG relative to that in plasma noradrenaline by 75.3%. From these results and the plasma clearance of noradrenaline and DOPEG it was calculated that the rate at which presynaptically formed DOPEG appeared in plasma amounted to 7.9% of the rate of total noradrenaline removal and to 22.3% of the rate of neuronal uptake. (5.) The rate of appearance in plasma of DOPEG originating from the neuronal re-uptake of endogenous noradrenaline was 192.3 pmol (kg−1). min−1 suggesting that the rate of neuronal re-uptake amounted to 862.3 pmol (kg−1) min−1 (6.) The slope of the regression line relating plasma DOPEG to plasma noradrenaline concentrations under conditions of noradrenaline release exceeded that of the corresponding regression line observed during noradrenaline infusion by a factor of about 10. This difference in slope suggests that, in the absence of infused noradrenaline, the average noradrenaline concentration at all noradrenergic neuroeffector junctions of the rabbit is 3.2 times as high as that in plasma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...