Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: Key words Compulsion ; Addiction ; Cocaine ; Amphetamine ; Cannabis ; Phencyclidine ; Nucleus accumbens ; Amygdala ; Frontal cortex ; Limbic ; Stimulus-reward association ; Conditioned reward ; Sensitization ; Drug-seeking ; Inhibitory control ; Cognition ; Conditioned stimulus ; Incentive motivational ; Dopamine ; Rat ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Drug abuse and dependence define behavioral states involving increased allocation of behavior towards drug seeking and taking at the expense of more appropriate behavioral patterns. As such, addiction can be viewed as increased control of behavior by the desired drug (due to its unconditioned, rewarding properties). It is also clear that drug-associated (conditioned) stimuli acquire heightened abilities to control behaviors. These phenomena have been linked with dopamine function within the ventral striatum and amygdala and have been described specifically in terms of motivational and incentive learning processes. New data are emerging that suggest that regions of the frontal cortex involved in inhibitory response control are directly affected by long-term exposure to drugs of abuse. The result of chronic drug use may be frontal cortical cognitive dysfunction, resulting in an inability to inhibit inappropriate unconditioned or conditioned responses elicited by drugs, by related stimuli or by internal drive states. Drug-seeking behavior may thus be due to two related phenomena: (1) augmented incentive motivational qualities of the drug and associated stimuli (due to limbic/amygdalar dysfunction) and (2) impaired inhibitory control (due to frontal cortical dysfunction). In this review, we consider the neuro-anatomical and neurochemical substrates subserving inhibitory control and motivational processes in the rodent and primate brain and their putative impact on drug seeking. The evidence for cognitive impulsivity in drug abuse associated with dysfunction of the frontostriatal system will be discussed, and an integrative hypothesis for compulsive reward-seeking in drug abuse will be presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2072
    Keywords: Key words Locomotor activity ; Nucleus accumbens ; d-Amphetamine ; Cocaine ; Sensitization ; Conditioned reward
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The mesolimbic dopamine (DA) system has been implicated in conditioned reward (CR), locomotor sensitization, and the reinforcing properties of psychomotor stimulants. Stimuli with formerly motivationally neutral properties that gain incentive properties by their predictive association with primary reinforcers are termed conditioned, or secondary, reinforcers. In these experiments, we investigated whether cocaine sensitization could potentiate augmented responding for CR produced by intra-accumbens amphetamine. After subjects were trained on the CR paradigm for 14 days, they received a regimen of cocaine sensitization or saline injections. On 2 test days, 8–10 days later, subjects were given amphetamine (6 µg/0.5 µl) or saline infusions into the nucleus accumbens (NAc) and responding for CR was measured using the ”acquisition of a new response” paradigm. Responding on one novel lever resulted in the delivery of the conditioned stimulus (conditioned reinforcer, or CR lever), whereas responding on the other lever resulted in no CR stimulus presentation (NCR lever). Animals sensitized to cocaine showed increased responding on the CR lever after intra-NAc saline and potentiated CR lever responding after intra-NAc amphetamine. No differences in responding between the cocaine- and saline-treated groups on the NCR lever after the challenge were found. Locomotor sensitization under these conditions was confirmed in a separate group of subjects. These findings show that prior exposures to cocaine results in changes that potentiate the ability of intra-NAc amphetamine to enhance CR. Repeated stimulant drug use may induce long-term neuronal adaptations that result in increased sensitivity to the behavioral, or incentive motivational, effects of stimulant drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...