Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Computational Chemistry and Molecular Modeling  (24)
  • Theoretical, Physical and Computational Chemistry  (5)
  • 1
    ISSN: 0894-3230
    Schlagwort(e): n-Butyllithium ; benzoic acid ; nucleophilic addition ; deprotonation ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Notizen: ---An evaluation of a branching vs sequential mechanism for the reaction of benzoic acid with n-butyllithium favors the latter. © 1997 John Wiley & Sons, Ltd.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 32 (1987), S. 65-74 
    ISSN: 0020-7608
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: The molecular dynamics free energy perturbation method was applied to study the solvation effect on the tautomeric equilibria in water solution as well as association of the nucleic acid base pairs in water solution and in vacuo. Tautomerization energies in vacuo calculated by the ab initio SCF-HF method differed from experiment by 1-2 kcal/mol, even if geometry optimization was performed and MP2 correlation energy calculated at 6-31G* basis set was added.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 14 (1993), S. 312-329 
    ISSN: 0192-8651
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Biochemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Informatik
    Notizen: A fully functional parallel version of the molecular dynamics (MD) module of AMBER3a has been implemented. Procedures parallelized include the calculation of the long-range nonbonded Coulomb and Lennard-Jones interactions, generation of the pairlist, intramolecular bond, angle, dihedral, 1-4 nonbonded interaction terms, coordinate restraints, and the SHAKE bond constraint algorithm. As far as we can determine, this is the first published description where a distributed-memory MIMD parallel implementation of the SHAKE algorithm has been designed to treat not only hydrogen-containing bonds but also all heavy-atom bonds, and where “shaken” crosslinks are supported as well. We discuss the subtasking and partitioning of an MD time-step, load balancing the nonbonded evaluations, describe in algorithmic detail how parallelization of SHAKE was accomplished, and present speedup, efficiency, and benchmarking results achieved when this hypercube adaptation of the MD module AMBER was applied to several variant molecular systems. Results are presented for speedup and efficiency obtained on the nCUBE machine, using up to 128 processors, as well as benchmarks for performance comparisons with the CRAY YMP and FPS522 vector machines. © 1993 John Wiley & Sons, Inc.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 243-261 
    ISSN: 0192-8651
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Biochemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Informatik
    Notizen: We present molecular mechanics calculations on the conformational energies of several 2,2-dimethyl-trans-4,6-disubstituted-1,3-dioxanes. Previous studies by Rychnovsky et al.1 have suggested that the relative conformational energies of chair and twist-boat forms of these 1,3-dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel2 implementations of MM2 and MM3) both when compared to experiment and to high-level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic-potential-based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6-31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6-31G* relative conformational energies of the unsubstituted compound 2,2,4-trimethyl-1,3-dioxane, the absolute energy differences calculated with this new model between the chair and twist-boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6-31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single V1(—O—C—O—C—) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing ab initio and molecular mechanical energies of the molecule 1,1-dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3-dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best ab initio data compared to MM2* but is still significantly worse than that found with lower-level ab initio or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 362-370 
    ISSN: 0192-8651
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Biochemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Informatik
    Notizen: The solvation free energies of thymine and adenine were calculated using free energy methods to examine the effect of applying Lennard-Jones 6-12 and 10-12 perturbations to the hydrogen-bonding groups. The calculations were performed using a new free energy algorithm developed for the AMBER 4.0 program package that allows an interaction described by a Lennard-Jones 6-12 potential to be changed into one described by a hydrogen bond 10-12 potential. The algorithm applied allows this change to occur smoothly without the generation of more extrema on the potential surface. Results using this algorithm have been compared with those determined using the standard AMBER 3.0 Revision A program package, which provides for 6-12 to 6-12 parameter perturbations only. We have also developed a procedure to perform pyrimidine to purine nucleoside mutations to calculate the relative free energies of solvation directly. The theoretical results are compared to experimental energies derived from solvation and vaporization data taken from the literature. The free energies calculated using the new algorithm show good agreement with the derived experimental values. This is also true for the calculations that employ the 6-12 function only, but with 6-12 parameters modified to reflect the correct hydrogen-bonding interactions. However, perturbation of the “standard” 6-12 parameters without changing the functional form proves to be less effective in determining solvation free energies correctly, and demonstrates the importance of accurate hydrogen bond descriptions in free energy simulations.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 963-970 
    ISSN: 0192-8651
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Biochemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Informatik
    Notizen: Simulations of periodic boxes of tetrafluoromethane and trifluoromethane were run to determine van der Waals parameters for fluorine and for hydrogen attached to a fluorine-bearing carbon. The simulations of CF4 were performed first to determine the optimal van der Waals radius R* and well depth ε for fluorine by adjusting these parameters to reproduce the experimental molar volume and enthalpy of vaporization of CF4. The best values of R* and ε were determined to be 1.75 Å and 0.061 kcal/mol. Using these fluorine parameters, the simulations of CHF3 were then performed to determine if the hydrogen of this molecule required a smaller R* than that used for the “normal” hydrocarbon hydrogen determined by Spellmeyer and Kollman (results in preparation). That R* was determined by running Monte Carlo simulations on methane, ethane, propane, and butane and adjusting R* and ε for carbon and hydrogen to reproduce the experimental molar volume and enthalpy of vaporization. It was found that an Rε of 1.21 Å was optimal, significantly smaller than the R* = 1.49 Å found by Spellmeyer for “normal” hydrocarbon hydrogens. This value of R* is in good agreement with the R* for the hydrogen in CHF3 derived independently using ab initio calculations and molecular mechanics on F3C—H… OH2 by Veenstra et al. © 1992 by John Wiley & Sons, Inc.
    Zusätzliches Material: 1 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 0192-8651
    Schlagwort(e): Chemistry ; Theoretical, Physical and Computational Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Informatik
    Notizen: We investigated the convergence behavior of potential of mean force (PMF) calculations using free energy perturbation (FEP), thermodynamic integration (TI), and “slow growth” (SG) techniques. The critical comparison of these alternative approaches is illustrated by the study of three different systems: two tagged argon atoms in a periodic box of argon, two methane molecules, and two benzene molecules maintained in a “T-shaped” conformation, both dimers embedded in a periodic box of water. The complete PMF simulations were carried out considering several protocols, in which the number of intermediate “λ” states, together with the amount of sampling per individual state, were varied. In most cases, as much as 1 ns of molecular dynamics (MD) sampling was used to derive each free energy profile. For the different systems examined, we find that FEP and TI unquestionably constitute robust computational methods leading to results of comparable accuracy. We also show that proper convergence of the free energy calculations, and further quantitative interpretation of the PMFs, requires total simulation times much higher than has been hitherto estimated. In some circumstances, the free energy profiles derived from FEP calculations tend to be slightly poorer than those obtained with TI, as a probable consequence of the greater sensitivity of FEP to the window spacing δλ. In the context of TI, and to a lesser extent FEP, simulations, it appears preferable to employ a limited number of “λ” points of the integrand involving extensive sampling, rather than numerous points with fewer samplings. Finally, we note that, at least in the case of nonpolar interactions, PMFs of reasonable quality can be generated using SG, and at a substantially lower cost than with either FEP or TI. © 1996 by John Wiley & Sons, Inc.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 525-532 
    ISSN: 0192-8651
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Biochemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Informatik
    Notizen: The potential energy surfaces of four cyclic alkanes have been examined using molecular mechanics, semiempirical, and ab initio methods to determine if they produce mutually consistent results and investigate the source of any errors between the methods. The C5 — C8 cyclic alkanes were chosen since these structures present a finite set of conformations and transition-state geometries and are still within the computational time and memory limits of the quantum mechanical approaches. We also examined several conformations of 1,2-dideoxyribose to determine the effect of heteroatoms on the results for the 5-membered ring. The molecular mechanics and ab initio calculations are consistent in the relative energies and geometries determined for the conformers of all ring systems. While the semiempirical calculations yielded geometries consistent with the other methods (except for 5-membered rings), the relative energies often deviated substantially. A decomposition analysis of the semiempirical and molecular mechanics energies revealed that the disparities are mainly due to errors in the 1-center energies of the semiempirical calculations. The 2-center bonding and nonbonding energies followed reasonable trends for the conformers. The core-repulsion function, however, is suspected of producing anomalies. A minimum in the attractive Gaussian of this term at 2.1 Å for H—H interactions partly explains the propensity of the 5-membered rings to optimize to near planarity (decreasing 1,2-diaxial hydrogen distances to 2.3 Å) and the underestimation of the relative energy of the boat structure of cyclohexane.
    Zusätzliches Material: 1 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 351-373 
    ISSN: 0192-8651
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Biochemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Informatik
    Notizen: A coarse-grain parallel implementation of the free energy perturbation (FEP) module of the AMBER molecular dynamics program is described and then demonstrated using five different molecular systems. The difference in the free energy of (aqueous) solvation is calculated for two monovalent cations ΔΔGaq(Li+ Δ Cs+), and for the zero-sum ethane-to-ethane′ perturbation ΔΔGaq(CH3—methyl—X → X—methyl—CH3), where X is a ghost methyl. The difference in binding free energy for a docked HIV-1 protease inhibitor into its ethylene mimetic is examined by mutating its fifth peptide bond, ΔG(CO—NH → CH=CH). A potassium ion (K+) is driven outward from the center of mass of ionophore salinomycin (SAL-) in a potential of mean force calculation ΔGMeOH(SAL- · K+) carried out in methanol solvent. Parallel speedup obtained is linearly proportional to the number of parallel processors applied. Finally, the difference in free energy of solvation of phenol versus benzene, ΔΔGoct(phenol → benzene), is determined in water-saturated octanol and then expressed in terms of relative partition coefficients, Δ log(Po/w). Because no interprocessor communication is required, this approach is scalable and applicable in general for any parallel architecture or network of machines. FEP calculations run on the nCUBE/2 using 50 or 100 parallel processors were completed in clock times equivalent to or twice as fast as a Cray Y-MP. The difficulty of ensuring adequate system equilibrium when agradual configurational reorientation follows the mutation of the Hamiltonian is discussed and analyzed. The results of a successful protocol for overcoming this equilibration problem are presented. The types of molecular perturbations for which this method is expected to perform most efficiently are described. © 1994 by John Wiley & Sons, Inc.
    Zusätzliches Material: 11 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1164-1169 
    ISSN: 0192-8651
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Biochemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Informatik
    Notizen: In the process of studying the solvation of simple hydrocarbons, we found that the nonbond van der Waals (vdw) parameters for the TIP3P water model could be adjusted without significantly changing its liquid water properties. By increasing the van der Waals well depth ∊ from 0.152 kcal/mol for the TIP3P model to 0.190 kcal/mol (model TIP3P_MOD), the solvation free energy of all-atom methane changed from 2.5 kcal/mol to 2.1 kcal/mol, much closer to the experimental value of 2.0 kcal/mol. This change of van der Waals parameters does not change hydrophilic solvation, since calculations using either water model lead to the same relative solvation free energy between ethane and methanol. The solvation free-energy differences between methane and ethane and between ethane and propane have also been calculated with both models, and results found with the two water models are similar. For the united-atom hydrocarbon model, however, the solvation free energy of methane changed from 2.1 kcal/mol with TIP3P to 1.8 kcal/mol with TIP3P_MOD. © 1995 by John Wiley & Sons, Inc.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...