Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Contracture  (1)
  • Crabtree effect  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Journal of molecular medicine 67 (1989), S. 465-476 
    ISSN: 1432-1440
    Schlagwort(e): Myocardial ischemia ; Reperfusion injury ; Oxygen paradox ; Contracture ; Calcium ; Oxygen radicals ; ATP
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary After prolonged ischemia or hypoxia myocardial injury is not reversed but exacerbated by a resupply of the tissue with oxygen and substrates. The mechanism by which reversible ischemic or hypoxic myocardial injury becomes irreversible is not yet understood. It has been debated whether “reperfusion injury” merely uncovers pre-existing irreversible injury, or is indeed caused by the reperfusion/reoxygenation process. In recent years, three theories have been discussed that relate the onset of irreversibility either to: a critical energy loss; a critical accumulation of cellular calcium; or to the deleterious effects of free radical formation. In certain experimental models for each of these theories favourable results have been obtained. Current research suggests that absolute reversibility thresholds in energy depletion or calcium accumulation in the ischemic or hypoxic cell do not exist. A key role of free radical injury for reperfusion injury must also be questioned. There is, however, evidence that in tissue reversibility of ischemic cardiomyocyte injury is limited by conditions that make calcium-induced hypercontracture upon reoxygenation unavoidable. This occurs when, by hypercontracture, mutual mechanical disruption of the cells destroys the tissue. From isolated cardiomyocytes that are able to metabolically survive hypercontracture it has been observed that these metabolic conditions do not represent the last biological possibility to reverse injury.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Molecular and cellular biochemistry 88 (1989), S. 59-64 
    ISSN: 1573-4919
    Schlagwort(e): substrate oxidation ; fatty acids ; glycolysis ; Crabtree effect ; microvascular endothelial cells ; coronary system
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Summary The metabolism by coronary microvascular endothelial cells (CMEC) of the heart typical substrates palmitate and lactate was compared to that of glucose and glutamine. Confluent cultures of CMEC were used. Palmitate oxidation was saturable and independent of the exogenous albumin concentration. Palmitate, 300 μM, lactate, 1 mM, and glutamine, 0.5 mM, were oxidized to 35, 46, and 56 nmol CO2/h × mg protein. These oxidation rates were decreased by 80, 66, and 48% in presence of 5 mM glucose. The largest energy yield was obtained by glycolytic breakdown of glucose. Glucose, 5 mM, was degraded to lactate by 99%, and oxidized in the Krebs cycle by only 0.04%. 1% was catabolized via the hexose monophosphate pathway. The rate of glucose oxidation in the Krebs cycle could be 30-fold increased by the uncoupler 2,4-dinitrophenol, 30 µM. At concentrations lower than 1 mM the amount of glucose oxidized in the Krebs cycle also grew, indicating existence of the Crabtree effect. The energy demand of CMEC seems to be of the same order as that of the arrested heart.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...