Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Blue light and membrane depolarization ; Cucumis ; Light signal transduction ; Membrane voltage and resistance ; H+-ATPase (pump) inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H+-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca2+-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K+-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H+-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11–26% after 1–2 min of BL. Input resistance of trichome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H+-ATPase with subsequent transient activation of one or more types of ion channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 177 (1989), S. 121-130 
    ISSN: 1432-2048
    Keywords: Cell wall (viscoelastic properties) ; Cell wall enzymes ; Cell wall extension ; Creep of cell walls ; Cucumis ; Hypocotyl (growth)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Walls from frozen-thawed cucumber (Cucumis sativus L.) hypocotyls extend for many hours when placed in tension under acidic conditions. This study examined whether such “creep” is a purely physical process dependent on wall viscoelasticity alone or whether enzymatic activities are needed to maintain wall extension. Chemical denaturants inhibited wall creep, some acting reversibly and others irreversibly. Brief (15 s) boiling in water irreversibly inhibited creep, as did pre-incubation with proteases. Creep exhibited a high Q10 (3.8) between 20° and 30°C, with slow inactivation at higher temperatures, whereas the viscous flow of pectin solutions exhibited a much lower Q10 (1.35). On the basis of its temperature sensitivity, involvement of pectic gel-sol transitions was judged to be of little importance in creep. Pre-incubation of walls in neutral pH irreversibly inactivated their ability to creep, with a half-time of about 40 min. At 1 mM, Cu2+, Hg2+ and Al3+ were strongly inhibitory whereas most other cations, including Ca2+, had little effect. Sulfhydryl-reducing agents strongly stimulated creep, apparently by stabilizing wall enzyme(s). The physical effects of these treatments on polymer interactions were examined by Instron and stress-relaxation analyses. Some treatments, such as pH and Cu2+, had significant effects on wall viscoelasticity, but others had little or no apparent effect, thus implicating an enzymatic creep mechanism. The results indicate that creep depends on relatively rugged enzymes that are firmly attached to or entangled in the wall. The sensitivity of creep to SH-reducing agents indicates that thiol reduction of wall enzymes might provide a control mechanism for endogenous cell growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...