Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 1990-1994  (2)
  • 1965-1969
  • Cyanosis  (1)
  • DNA methylation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of toxicology 64 (1990), S. 644-649 
    ISSN: 1432-0738
    Keywords: Sodium dichromate ; Glycolysis ; Hyperglycemia ; Glycogenolysis ; Cyanosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of sodium dichromate on cellular metabolism was investigated. Intraperitoneal injection of sodium dichromate into the rat (20 or 40 mg/kg) caused significant increases in serum lactate, pyruvate, and creatinine concentrations within 15 min after intoxication. Severe hyperglycemia occurred thereafter, as a result of increased hepatic glycogenolysis, which was seen in the first 2 h after dichromate. However, liver glycogen was resynthesized in 24 h-fasted rats after glucose refeeding. Dichromate decreased serum total amino acids, with a consequent increase in blood urea nitrogen (BUN) concentration. Unlike HgCl2 (2 mg/kg, i.p.), As2O3 (5 mg/kg, i.p.), and KCN (5 mg/kg, i. p.), dichromate showed the largest metabolic disturbance only in the early period after treatment. In addition, dichromate produced cyanosis, which appeared during the period of the accelerated glycolysis and breakdown of creatine phosphate. Regardless of chemical species, only the hexavalent chromium compounds had an effect on the cellular metabolism. Trivalent chromium compounds had no effect at all. These results suggest that dichromate possesses a characteristic dual action on cellular metabolism, which might be related to its metabolic fate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1058-8388
    Keywords: CRABP-I ; P19 cells ; DNA methylation ; Gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The mouse cellular retinoic acid binding protein-I (CRABP-I) gene is specifically up-regulated by retinoic acid (RA) in P19 mouse embryonal carcinoma cells, and its expression in animals is spatially and temporally restricted to RA-sensitive tissues during embryonic development. This study demonstrates that, in adult mouse tissues and P19 cells where the expression of CRABP-I is detected at the basal level, the 5′- flanking region of the CRABP-I gene is hypermethylated at the C residues of all the Hpa II sites. Conversely, in mouse embryos during early stages of development when the expression of CRABP-I gene is detected at a much higher level, this region is demethylated at these Hpa II sites. In P19, enhancement on the RA-induced up-regulation of CRABP-I can be observed in cells treated with 5-azacytidine (5-AzaC) in conjunction with RA, where partial demethylation in the 5′-flanking region of CRABP-I gene is observed. Nuclear run-on experiments indicate that increased message levels of CRABP-I in P19 cells can be accounted for, at least partially, by increases in its transcription rates. The induction of retinoic acid receptor (RAR) β by RA can also be enhanced by 5-AzaC, but to a much lesser degree. In contrast, all the Hpa II sites in the structural gene portion, at least in the first two exons, are fully demethylated at the C residues. © 1994 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...