Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1434-1948
    Keywords: Iron(III) ; Peroxo Complexes ; Kinetics ; Hydrogen Peroxide ; Catalase ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The new diiron complex [Fe2(tbpo){O2As(CH3)2}(CH3O)(CH3OH)](ClO4)3 · 5 CH3OH · 2 H2O (1) containing a (μ-alkoxo)(μ-dimethylarsinato)diiron(III) core was synthesized using the heptadentate ligand N,N,N′,N′-Tetrakis(2-benzimidazolylmethyl)-1,3-diamino-2-propanol (Htbpo). The complex was characterized structurally by X-ray crystallography. 1reproduces the coordination mode and the stoichiometry of the proposed purple acid phosphatase-arsenate inhibitor complex. More importantly, 1 is a good functional model for the activation of small molecules, since the solvent molecule in the coordination sphere of each iron ion can be substituted very easily by a small substrate molecule. This is confirmed by the comparatively high pH-dependent catalase-like activity of 1. In order to study the influence of the cacodylate bridge on the formation of the metastable adduct with hydrogen peroxide, the analogous hydroxo-bridged complex [Fe2(tbpo)(OH)(NO3)2](NO3)2 · CH3OH · 2 H2O (2) was employed. The reactions of 1and 2 with H2O2 were studied as a function of [H2O2], pH, temperature, and pressure, and the kinetic results including the activation parameters are reported. In the case of compound 2 the reaction proceeds in one step, and the observed first order rate constant, kobs, shows a linear dependence on the hydrogen peroxide concentration with a zero intercept. For complex 1 the kinetic traces could be fitted to two exponential functions. One of the observed pseudo-first-order rate constants, kobs1, exhibits a linear dependence on the hydrogen peroxide concentration with a zero intercept, whereas the other rate constant, kobs2, was independent of the hydrogen peroxide concentration. A mechanistic interpretation is presented.Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2005/1999/99068_s.pdf or from the author.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-193X
    Keywords: Cyclizations ; Electron transfer ; High-pressure effects ; Radical cations ; Silyl enol ethers ; Solvent effects ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Oxidative photoinduced electron transfer (PET) reactions have been performed with various silyl enol ethers and silyloxy-2H-chromones bearing an olefinic or silylacetylenic side chain. The reactions result in regioselective ring closure with the formation of bi- to tetracyclic ring systems with a well-defined ring juncture, e.g. perhydrophenanthrenones 13 or benzo-annellated xanthenones 24. Our investigations have focussed on the optimization of this cyclization method with regard to irradiation time and product yield. The irradiation times could be reduced by using the cosensitized PET method. Modifying the substrate at the silyl group led to enhanced yields. In addition, we found that solvent and pressure dependences are important tools, allowing control of the regiochemistry. Both the synthesis of 6-endo products by radical cationic reaction pathways, as well as 5-exo ring closure by radical intermediates was achieved. Mechanistic details, including findings from deuterium labelling experiments, are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...