Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Peroxisome ; Methanol ; Methylamine ; Yeast ; Hansenula polymorpha ; Alcohol oxidase ; Amino oxidase ; Catalase ; Catabolite inactivation ; Turnover ; Cytochemical localization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth of Hansenula polymorpha in shake flasks and chemostat cultures in the presence of methanol as the sole source of carbon and methylamine as the sole source of nitrogen was associated with the development of peroxisomes in the cells. The organelles were involved in the concurrent oxidation of these two compounds, since they contained both alcohol oxidase and amine oxidase, which are key enzymes in methanol and methylamine metabolism, respectively. In addition catalase was present. Peroxisomes with a completely crystalline substructure were observed in methanol-limited chemostat-grown cells. Amine oxidase probably formed an integral part of these crystalloids, whereas catalase was present in a freely diffusable form. Transfer of cells, grown in a methanol-limited chemostat in the presence of methylamine into glucose/ammonium sulphate media resulted in the loss of both alcohol oxidase and amine oxidase activity from the cells. This process was associated with degradation of the crystalline peroxisomes. However, when cells were transferred into glucose/methylamine media, amine oxidase activity only declined during 2 h after the transfer and thereafter increased again. This subsequent rise in amine oxidase activity was associated with the development of new peroxisomes in the cells in which degradation of the crystalline peroxisomes, originally present, continued. These newly formed organelles probably originated from peroxisomes which had not been affected by degradation. When in the methanollimited chemostat methylamine was replaced by ammonium sulphate, repression of the synthesis of amine oxidase was observed. However, inactivation of this enzyme or degradation of peroxisomes was not detected. The decrease of amine oxidase activity in the culture was accounted for by dilution of enzyme as a result of growth and washout.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...