Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Protein electrostatistics ; Electron-proton coupling ; Redox-Bohr effect ; pKa calculations ; Cytochrome c3
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  A comparative study of the pH-dependent redox mechanisms of several members of the cytochrome c 3 family has been carried out. In a previous work, the molecular determinants of this dependency (the so-called redox-Bohr effect) were investigated for one species using continuum electrostatic methods to find groups with a titrating range and strength of interaction compatible with a mediating role in the redox-Bohr effect. Here we clarify these aspects in the light of new and improved pK a calculations, our findings supporting the hypothesis of propionate D from heme I being the main effector in the pH-dependent modulation of the cytochrome c 3 redox potentials in all the c 3 molecules studied here. However, the weaker (but significant) role of other titrating groups cannot be excluded, their importance and identity changing with the particular molecule under study. We also calculate the relative redox potentials of the four heme centers among the selected members of the c 3 family, using a continuum electrostatic method that takes into account both solvation and interaction effects. Comparison of the calculated values with available data for the microscopic redox potentials was undertaken, the quality of the agreement being dependent upon the choice of the dielectric constant for the protein interior. We find that high dielectric constants give best correlations, while low values result in better magnitudes for the calculated potentials. The possibility that the crystallographic calcium ion in c 3 from Desulfovibrio gigas may be present in the solution structure was tested, and found to be likely.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 523-544 
    ISSN: 0887-3585
    Keywords: protonation equilibrium ; protein conformation ; continuum electrostatics ; potential of mean force ; force fields ; mean field theory ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Solution pH is a determinant parameter on protein function and stability, and its inclusion in molecular dynamics simulations is attractive for studies at the molecular level. Current molecular dynamics simulations can consider pH only in a very limited way, through a somewhat arbitrary choice of a set of fixed charges on the titrable sites. Conversely, continuum electrostatic methods that explicitly treat pH effects assume a single protein conformation whose choice is not clearly defined. In this paper we describe a general method that combines both titration and conformational freedom. The method is based on a potential of mean force for implicit titration and combines both usual molecular dynamics and pH-dependent calculations based on continuum methods. A simple implementation of the method, using a mean field approximation, is presented and applied to the bovine pancreatic trypsin inhibitor. We believe that this constant-pH molecular dynamics method, by correctly sampling both charges and conformation, can become a valuable help in the understanding of the dependence of protein function and stability on pH. © 1997 Wiley-Liss Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...