Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4994
    Keywords: DANSyl-labeled copolymers ; swelling volume ; time-resolved fluorescence ; solvent relaxation ; rotational depolarization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The fluorescent probe dimethylaminonaphthylsulfonamide is covalently bound to the ends of the pol(ethylene glycol) chains of the swellable block copolymers poly(ethylene glycol)–polystyrene (PEG-PS) and poly(ethylene glycol)–poly(ethylene imine) (PEG-PEI) to investigate the molecular mobility inside the polymers, swollen by different liquids. Steady-state and time-resolved studies of the Stokes shift between absorption and fluorescence spectra reveal that the probe is solvated by both the polymer matrix and the liquid phase. The extent of solvation by the liquid and the mobility of the microenvironment of the probe depend on both the swelling volume of the polymer and the solubility of the probe in this liquid. Steady-state and time-resolved fluorescence depolarisation measurements show that the polymer matrix forms a very rigid solvent cage, which almost completely immobilizes the probe. Upon solvation of the probe by the liquid, the mobility of the probe increases. In PEG-PEI swollen by polar solvents, the mobilities of the probe itself and of its microenvironment, although not reaching the values observed in homogeneous solution, are significantly higher than in PEG-PS, due to the hydrophilic nature of the polymeric backbone in PEG-PEI.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4994
    Keywords: HPLC stationary phases ; ligand length ; solid-state NMR spectroscopy ; time resolved fluorescence anisotropy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Alkyl chain bonded “reversed” HPLC phases consisting of 6 to 30 carbon atoms are investigated by fluorescence spectroscopy, steady-state and time-resolved fluorescence anisotropy, and solid-state NMR spectroscopy. The structure and dynamics of the interphase formed by alkyl chains and liquid phase penetrating each other are studied as a function of alkyl chain length. Increasing alkyl chain lengths lead to enhanced partitioning of the fluorescent probe diphenylhexatriene (DPH) into the interphase, as monitored by fluorescence decay curves. The concomitant spectral red shift of DPH fluorescence excitation maxima is evidence of increased interphase polarizability. Time-resolved fluorescence anisotropy measurements reveal that the motion of the probe molecule in the interphase is “wobble in cone”-like. Cone angles θ and rotational correlation times τR change from θ = 63° and τR = 0.75 ns in C6 phases to θ = 42° and τR = 1.50 ns in C30 phases, thus indicating decreasing probe mobility with increasing ligand length. This interpretation is supported by 13C CP/MAS NMR spectra, which show reduced contributions of alkyl chain gauche conformations, i.e., enhanced interphase order, in phases with long alkyl chains and high surface coverage. A concomitant increase in the line-widths of 1H MAS NMR peaks indicates reduced mobility of the longer chains. The spectroscopic observations are consistent with the results of HPLC separations, where enhanced shape selectivity is found with increasing ligand length, rod-shaped molecules like DPH showing the greatest increase in retention time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...