Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomolecular NMR 10 (1997), S. 245-253 
    ISSN: 1573-5001
    Keywords: DNA ; DNA–protein complex ; Deoxythymidylate kinase ; Enzymatic synthesis ; Heteronuclear NMR ; Isotope labeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The power of heteronuclear NMR spectroscopy to study macromoleculesand their complexes has been amply demonstrated over the last decade. Theobstacle to routinely applying these techniques to the study of DNA has beenthe synthesis of 13C,15N-labeled DNA. Here wepresent a simple and efficient method to generate isotope-labeled DNA forNMR studies that is as easy as that for isotope labeling of RNA. The methodwas used to synthesize a uniformly13 C,15N-labeled 32-nucleotide DNA that binds tohuman basic fibroblast growth factor with high affinity and specificity.Isotope-edited experiments were applied to the13 C,15N-labeled DNA bound to unlabeled protein,and the 13 C,15N-labeled DNA was also examined incomplex with 15N-labeled protein. The NMR experiments showthat the DNA adopts a well-defined stable structure when bound to theprotein, and illustrate the potential of13 C,15N-labeled DNA for structural studies ofDNA–protein complexes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: nucleotide sequence ; repeated DNA sequence, rye ; (Secale cereale) ; transposon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rye-specific R173 family of repeated DNA sequences consists of ca. 15 000 individual copies per diploid rye (Secale cereale) genome and is distributed over all 7 rye chromosomes in a dispersed manner. Individual R173 elements vary in size between 3 and 6 kb, are generally not arranged as tandem repeats and are flanked by both multi-copy and single-copy sequences. DNA sequence analysis of three R173 elements (R173-1, R173-2 and R173-3) demonstrated a high degree of homology in conserved domains. The structure of R173-1 was quite different from the other two elements: long direct repeats, which represent a rye-specific repetitive sequence, were found at the ends and a 600 bp long domain was replaced by an unrelated sequence of approximately equal size. R173-2 and R173-3 were extremely similar to each other with the exception of a terminal truncation of R173-2. No open reading frames for proteins 〉20 kDa were present and a database search failed to detect significant homologies to published protein sequences. Despite the transposon like genomic organisation of the R173 family, individual elements lacked sequence features frequently associated with transposons and retrotransposons. In contrast, two of the regions flanking R173 elements showed strong DNA homologies to a 850 bp long region of a proposed wheat retrotransposon and to a 300 bp long region downstream of the wheatGlu-D1 gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...