Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 26 (1999), S. 375-381 
    ISSN: 1432-2021
    Keywords: Key words Muscovite-2M1 ; In situ powder diffraction ; Dehydroxylation ; Kinetics ; Structure simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract  Muscovite-2M1 shows a major phase transition at about 800°C, which is generally attributed in the literature to the structural dehydroxylation process, although a number of structural models have been proposed for the dehydroxylated phase, and different transformation mechanisms have also been put forward. The observed first order transformation involves an increase in the cell volume, and it is not clear to date how the cell expansion is related to the loss of hydroxyl groups. The phase change has been re-investigated here by in situ high temperature powder diffraction, both in non-isothermal and isothermal modes, to combine for the first time the structural and the kinetic interpretation of the transformation. The results unequivocally confirm that the reaction taking place in the temperature range 700–1000°C is truly a dehydroxylation process, involving the nucleation and growth of the high temperature dehydroxylated phase, having Al in 5-fold coordination. Structural simulations of the basal peaks of the powder diffraction patterns indicate that the model originally proposed by Udagawa et al. (1974) for the dehydroxylated phase correctly describes the high temperature phase. The kinetic analysis of the isothermal data using an Avrami-type model yields values for the reaction order compatible with a reaction mechanism limited by a monodimensional diffusion step. Apparent activation energy of the process in vacuum is about 251 kJ/mol. Experiments carried out at temperatures much higher than the onset temperature of the reaction show that the dehydroxylation reaction overlaps with the reaction of formation of mullite, the final product in the reaction pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...