Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 18 (1973), S. 446-463 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Vestibular ; Spinocerebellar ; Purkinje ; Deiters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The organization of the cerebellar, vestibular and spinal inputs to the lateral and medial vestibulospinal tract (LVST and MVST) cells was studied in anaesthetized rabbits. Synaptic actions of these inputs were determined by recording postsynaptic potentials intracellularly and also unit spike discharges extracellularly from a number of LVST and MVST cells. As reported previously in cats, inhibition was evoked very frequently from the vermal cortex of the cerebellar anterior lobe and less frequently from that of the posterior lobe. However, no such inhibition was derived from the flocculus. The cerebellar inhibition was exerted upon both LVST and MVST cells, whether they received monosynaptic activation from the primary vestibular afferents (second-order) or not and whether they conducted impulses fast or slowly. However, the inhibition was frequently absent in “slow” “second-order” MVST cells. The vast majority of LVST and MVST cells received an excitatory input from the spinocerebellar afferents ascending the funiculus posterolateralis. This input was particularly prominent from the upper cervical cord. The spinal excitation thus obtained occurred in close connection with the cerebellar inhibition. Hence, it appears that the cerebellar vermis receives the spinal signals that drive LVST and MVST cells and in turn sends out inhibitory signals to adjust the reflex activity in these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 12 (1971), S. 223-237 
    ISSN: 1432-1106
    Keywords: Deiters ; Purkinje Cell ; Mossy fibre ; Granule Cell ; IPSP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In anaesthetized cats, electric pulse stimuli were applied at various lateralities to the anterior lobe of the cerebellum. In dorsal Deiters neurones delayed IPSPs with latencies of 3–6 msec were evoked from the entire area of the culmen including the paravermis bilaterally. The delayed IPSPs had a summit time of about 2 msec and a duration of about 7 msec. They showed a marked temporal facilitation and subsequent depression with double shock stimulation. Corticovestibular fibers were penetrated within the nucleus of Deiters and showed delayed, labile responses to cortical stimulation, corresponding to the delayed IPSPs in Deiters neurones. During stimulation of the anterior lobe at any laterality, field potentials recorded in the cerebellar cortex further revealed that there was activation, presumably through axon collaterals of mossy fibers, of granule cells and subsequently of Purkinje cells in the vermal cortex. Cortical events exhibited a prominent temporal facilitation and subsequent depression, in parallel with that observed for the delayed IPSPs in Deiters neurones. The delayed IPSPs in Deiters neurones arising from a wide area of the cerebellar cortex thus were attributed to activation through mossy fiber-granule cell pathway of Purkinje cells of the corticovestibular projection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 7 (1969), S. 214-230 
    ISSN: 1432-1106
    Keywords: Deiters ; Vestibular nerve ; EPSP ; Monosynaptic ; Disynaptic ; IPSP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Stimulation of the vestibular nerve induced EPSPs monosynaptically in 29% of cat's Deiters neurones sampled on the ipsilateral side. These EPSPs started with latencies of 0.6–1.0 msec, rose sharply with a summit time of 0.5 msec and decayed exponentially with a time constant of 0.9–1.7 msec. Then amplitudes were graded finely according to the intensity of the vestibular nerve stimulation, the maximal size being 5–10 mV. The unitary EPSPs, evoked by vestibular nerve stimulation at juxta-threshold intensity or appearing spontaneously, were as small as 0.2–0.3 mV in amplitude. Those neurones monosynaptically activated by vestibular nerve volleys were located in the ventral portion of the nucleus of Deiters, in agreement with histological data. The vestibular nerve impulses also produced delayed EPSPs with latencies of 1.0–1.8 msec, presumably disynaptically. They occurred in many Deiters neurones located not only ventrally but also dorsally. Even later EPSPs often were superposed on the monosynaptic EPSPs with latencies of 1.9–2.2 msec. There is evidence that they were caused by repetitive discharges in the vestibular nerve fibres which occur in response to single shock stimulation of the vestibular nerve. IPSPs were produced only polysynaptically in some Deiters neurones in association with the monosynaptic EPSPs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...