Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 71 (1988), S. 623-632 
    ISSN: 1432-1106
    Keywords: Magnetic stimulation ; Motor cortex ; Corticonuclear tract ; Cranial nerves
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The present investigation demonstrates that time-varying magnetic fields induced over the skull elicit distinct types of responses in muscles supplied by the cranial nerves both on the ipsilateral and the contralateral side. When the center of the copper coil was positioned 4 cm lateral to the vertex on a line from the vertex to the external auditory meatus, bilateral responses in the masseter, orbicularis oculi, mentalis, and sternocleidomastoideus muscles with a delay of about 10 to 14 ms after the stimulus occurred. Similar to the transcranially evoked muscle responses in hand muscles, the responses in the cranial muscles can be influenced in latency and amplitude by background excitation. It is concluded that these responses are induced by excitation of the face-associated motor cortex followed by multiple I-waves in the corticonuclear tract with both ipsilateral and contralateral projections to the corresponding motoneurones. Additionally, at higher stimulation strengths “short-latency” ipsilateral responses in muscles supplied by the trigeminal, facial, and accessory nerves occurred which we suggest are induced by direct stimulation of the peripheral cranial nerves in their intracisternal course. The present study confirms the bilateral projection of corticonuclear tracts in awake unanesthetised human subjects which has been observed by electrical stimulation on the exposed cortex during surgical procedures already decades ago. The present investigation will serve as a basis for the assessment of pathophysiological mechanisms involving the corticonuclear system or the peripheral cranial nerves in their proximal parts in awake humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 38-42 
    ISSN: 1432-0789
    Keywords: Key words Microbial biomass ; Depth profile ; Fumigation-extraction method ; Soil organic matter ; Dormant population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 μg g–1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 μg g–1 soil (neutral site) at 10–20 cm to values of between 13 and 12 μg g–1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 38-42 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Depth profile ; Fumigation-extraction method ; Soil organic matter ; Dormant population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 μg g-1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 μg g-1 soil (neutral site) at 10–20 cm to values of between 13 and 12 μg g-1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1459
    Keywords: Magnetic stimulation ; Motor cortex ; Corticonuclear tract ; Facial nerve ; Bell's palsy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Twenty-four patients with unilateral facial weakness of various aetiologies were investigated using a magnetic stimulator to stimulate the proximal segment of the facial nerve directly (short latency response) and also to activate the facial motoneurons bilaterally via corticonuclear pathways by placing the stimulating coil over the motor cortex (long latency responses). Electromyographic recordings were taken from both mentalis muscles using concentric needle electrodes. Seventeen patients were investigated at various times after onset of idiopathic facial palsy (Bell's palsy). In the acute stage (less than 5 days after onset) short and long latency responses on the paretic side were abnormal, being absent in all but one patient, in whom the short latency response was delayed. These abnormal responses were the earliest neurographic correlate for nerve conduction block. In 4 out of 9 patients seen up to 30 days after onset of palsy, trans-synaptically evoked long latency responses were absent. In patients examined more than 2 months after onset, long latency responses could always be obtained and, in 5 of 8 patients, short latency responses could also be elicited, indicating a return of the direct excitability of the nerve. Five patients with cerebral hemisphere lesions causing mild unilateral facial weakness had absent long latency responses when stimulating over the affected hemisphere, but normal bilateral long latency responses following stimulation over the unaffected cerebral hemisphere; short latency responses were normal. Magnetic stimulation of the brain and of the facial nerve can differentiate between central and peripheral causes of unilateral facial weakness and may prove useful in the early assessment of the degree of conduction block in Bell's palsy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...