Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 56 (1984), S. 279-292 
    ISSN: 1432-1106
    Keywords: Descending pathways ; Forelimb afferents ; Inhibitory C3-C4 propriospinal neurones ; Motoneurones
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A further analysis has been made of inhibitory pathways to motoneurones via C3-C4 propriospinal neurones (PNs). Intracellular recording was made from triceps brachi motoneurones and effects from higher centres and forelimb afferents on corticospinal IPSPs were investigated after transection of the corticospinal tract at the C5/C6 border. The shortest latencies of the IPSPs evoked by stimulation of the pyramid were as brief as those of the pyramidal EPSPs (Illert et al. 1977). It is postulated that the minimal linkage of the pyramidal IPSPs is disynaptic via inhibitory C3-C4 PNs projecting directly to motoneurones. It was confirmed that pyramidal IPSPs usually are depressed by volleys in forelimb motor axon collaterals (Illert and Tanaka 1978). A quantitative comparison was made of the recurrent depression of pyramidal IPSPs and of IPSPs caused by activation of the Ia inhibitory interneurones. The result support the hypothesis of two parallel inhibitory cortico-motoneuronal pathways via C3-C4 PNs, one disynaptic via the inhibitory PNs and the other trisynaptic via excitatory PNs and Ia inhibitory interneurones. Pyramidal volleys also evoked late IPSPs which in some cases were not depressed from forelimb motor axon collaterals. It is postulated that the late IPSPs are partly due to activation of inhibitory C3-C4 PNs. Disynaptic pyramidal IPSPs were effectively facilitated by volleys in rubro-, tecto- and reticulospinal fibres — but not from vestibulospinal fibres — showing a convergence from the former descending tracts on common inhibitory C3-C4 PNs. Projection from forelimb afferents and corticospinal fibres on common inhibitory C3-C4 PNs was revealed by strong facilitation of disynaptic pyramidal IPSPs from cutaneous forelimb afferents. No corresponding effect was evoked from C2 neck afferents. Stimulation in the lateral reticular nucleus (LRN) evoked monosynaptic IPSPs in some motoneurones. The results of threshold mapping in and around the LRN suggest that the IPSPs are caused by antidromic stimulation of ascending collaterals of inhibitory neurones also projecting to motoneurones, possibly the inhibitory C3-C4 PNs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 56 (1984), S. 293-307 
    ISSN: 1432-1106
    Keywords: Descending pathways ; Forelimb afferents ; Disynaptic inhibition ; C3-C4 propriospinal neurones
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Intracellular recording was made in the C3-C4 segments from cell bodies of a previously described system of propriospinal neurones (PNs), which receive convergent monosynaptic excitation from different higher motor centres and mediate disynaptic excitation and inhibition from them to forelimb motoneurones. Inhibitory effects in these PNs have now been investigated with electrical stimulation of higher motor centres and forelimb nerves. Short-latency IPSPs were evoked by volleys in the cortico-, rubro- and tectospinal tracts and from the reticular formation. Latency measurements showed that those IPSPs which required temporal summation were disynaptically mediated. After transection of the corticospinal tract in C2, only small and infrequent disynaptic IPSPs were evoked from the pyramid. It is postulated that disynaptic pyramidal IPSPs only to a small extent are evoked by monosynaptic excitation of reticulospinal inhibitory neurones known to project directly to the PNs, and that they are mainly mediated by inhibitory interneurones in the C3-C4 segments. Tests with spatial facilitation revealed monosynaptic excitatory convergence from tecto-, rubro- and probably also from reticulospinal fibres on inhibitory interneurones monosynaptically excited from corticospinal fibres (interneuronal system I). Disynaptic IPSPs were also evoked in the great majority of the PNs by volleys in forelimb muscle and skin nerves. A short train of volleys was usually required to evoke these IPSPs from group I muscle afferents. In the case of cutaneous nerves and mixed nerves single volleys were often effective, and the lack of temporal facilitation of IPSPs produced by a train of volleys showed strong linkage from these nerves. The results obtained after transection of the dorsal column at different levels show that the relay is almost entirely rostral to the forelimb segments. Test with spatial facilitation revealed that interneurones monosynaptically activated from forelimb afferents receive convergent excitation from corticospinal but not or only weakly so from tecto- or rubrospinal fibres. There was also convergence from group I muscle afferents and low threshold cutaneous afferents on common interneurones. It is postulated that the disynaptic IPSPs from forelimb afferents are mediated by inhibitory interneurones (interneuronal system II) other than those receiving convergent descending excitation. Volleys in corticospinal fibres, in addition to the disynaptic IPSPs, evoke late IPSPs in the PNs. Similar late IPSPs were evoked from the ipsilateral forelimb by stimulation of the FRA. Monosynaptic IPSPs were evoked in the majority of the PNs on weak stimulation of the lateral reticular nucleus (LRN) and from regions dorsal to it. Results from threshold mapping suggest that these IPSPs are due to antidromic stimulation of ascending inhibitory neurones which also project to the C3-C4 PNs, and that the ascending collaterals terminate in the LRN or/and the base of the cuneate nuclei. Activity in the ascending collaterals may give higher centres information regarding inhibitory control of the PNs. It is postulated that interneuronal system I subserves descending feed-forward inhibition and interneuronal system II feed-back inhibition from the forelimb of transmission through the C3-C4 PNs to motoneurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 56 (1984), S. 308-322 
    ISSN: 1432-1106
    Keywords: Descending pathways ; Forelimb afferents ; C3-C4 inhibition ; C3-C4 propriospinal neurones
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Extra- and intracellular recording was made from cells in the C3-C4 segments with the aim of finding interneurones of previously described inhibitory pathways to the C3-C4 propriospinal neurones, which may mediate descending feed-forward inhibition and feed-back inhibition from the forelimb, respectively. The lateral interneurones were found in the lateral part of lamina VII interspersed among the C3-C4 PNs and like them they receive convergent monosynaptic EPSPs and disynaptic IPSPs from the cortico-, rubro-, tecto- and reticulospinal tracts. Disynaptic IPSPs, but only rarely monosynaptic EPSPs, are evoked in them from forelimb nerves. The lateral interneurones do not project to the lateral reticular nucleus (LRN). The medial interneurones were found medially in laminae V and VI in a region where volleys in forelimb nerves evoke extracellular monosynaptic focal potentials (Rosén 1969). There is somatotopic organization of the projection from the forelimb to this region. Many neurones are strongly monosynaptically excited from group I muscle or/and cutaneous forelimb afferents. In addition, late discharges are evoked in many cells from cutaneous afferents and high threshold muscle afferents. Corticospinal volleys evoked monosynapic excitation in the great majority of these cells and usually also late EPSPs or IPSPs. Typically, rubrospinal and tectospinal volleys evoked neither monosynaptic excitation nor late effects as those elicited from corticospinal fibres. In some of the interneurones, IPSPs were evoked from forelimb nerves. About 20% of the medial “interneurones” have an ascending projection to the caudal brain stem. Threshold mapping for antidromic stimulation revealed termination in the main cuneate nucleus, the external cuneate nucleus and/or the LRN and also a branch projecting to more rostral levels in the brain. A few of the neurones in the medial region are PNs projecting to the forelimb segments. It is postulated that interneurones both of the lateral and medial type are inhibitory and project to the C3-C4 PNs. It is further postulated that the former are intercalated in the descending feed-forward inhibitory pathway to the C3-C4 PNs and the latter in the feed-back inhibitory pathway from the forelimb to these PNs. The role of feed-forward and feed-back inhibition of transmission from the brain to forelimb motoneurones via the C3-C4 PNs is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...