Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Dictyostelium  (2)
  • Macrocyst  (2)
  • Sexual development  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 342 (1994), S. 239-241 
    ISSN: 0014-5793
    Keywords: Cell cycle ; Dictyostelium ; Differentiation ; Putative shift (PS) point ; cAMP receptor 1
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Mitochondria ; Golgi complex ; Prespore-specific vacuole ; Prespore differentiation ; Immuno-electron microscopy ; Dictyostelium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mitochondrion has been mainly given attention as a self-reproductive and respiratory organelle. We report here that the mitochondrion may participate in the formation of a cell-type-specific organelle, coupling with the Golgi complex. During the development ofDictyostelium discoideum, the two types of cells, i.e., the anterior prestalk cells and the posterior prespore cells form a polarized cell mass. Prespore differentiation is characterized by the presence of unique vacuoles named PSVs (prespore-specific vacuoles) in the cytoplasm. Thus the PSV is the most essential organelle to understand the structural basis of cell differention in this organism. In differentiating prespore cells, the mitochondrion exerts a remarkable transformation to form a sort of vacuole (M-vacuole). Using a PSV specific antibody, it was immunocytochemically shown that a PSV antigen (C-10) is localized in the M-vacuole as well as in the lining membrane of PSV. Interestingly, the C-10 antigen was also noticed in the Golgi cisternae that had fused with M-vacuole. Based on these findings, we propose here a promising model which suggests how both mitochondria and Golgi cisternae may be coordinately involved in the PSV formation. This model will provide a new aspect of mitochondrial functions in cell differentiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Dictyostelium mucoroides ; Cellular slime mold ; Cytoplasmic pH ; Ethylene ; Cyclic AMP ; Sexual development ; Macrocyst ; Sorocarp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Dictyostelium mucoroides-7 (Dm 7) and a mutant MF 1 derived from it exhibit two developmental pathways: sorocarp formation occurs during the asexual process, and macrocyst formation during the sexual cycle. The two developmental pathways are mainly regulated by two chemical substances: 3′,5′-cyclic adenosine monophosphate (cAMP) and ethylene. Recently, we have demonstrated that cytoplasmic pH (pHi) has a critical role for the choice of developmental pathways, higher pHi being favourable to macrocyst formation. Thereupon, attention was riveted to the relation of pHi to biosynthesis of cAMP and ethylene. Effect of pHi on the production and release of ethylene, a potent inducer of macrocyst formation, was examined, using the two facing culture method. The result showed that lowered pHi inhibits ethylene production, thus resulting in a failure of cells to form macrocysts. The accumulation of cAMP, an inhibitor of macrocyst formation, was found to vary depending on extracellular pH (pHo), but diethylstilbestrol (DES) that is a proton pump inhibitor and also an inhibitor of macrocyst formation had no significant effect on the accumulation. Taken together these results indicate that higher pHi may induce macrocyst formation through enhancement of ethylene production rather than inhibition of cAMP synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 167 (1992), S. 159-168 
    ISSN: 1615-6102
    Keywords: Dictyostelium mucoroides ; Ethylene ; Sexual development ; Macrocyst ; Sorocarp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The cellular slime moldDictyostelium mucoroides-7 (Dm 7) and its mutant (MF 1) exhibit sexual or asexual development depending upon culture conditions. During the sexual cycle macrocyst formation occurs, whereas sorocarps containing spores and stalk cells are asexually formed. As previously reported, the macrocyst formation is marked by the emergence of true zygotes, and is induced by a potent plant hormone, ethylene. The concentration of ethylene required for macrocyst induction was determined to establish the similarity of ethylene action between this organism and higher plants. Macrocysts are induced by low (1 μl/l) exogenous concentrations of ethylene. Higher concentrations (10–1,000 ul/l) also gave essentially the same inductive activity. Ethionine, an analogue of methionine, was found to inhibit zygote formation during sexual development through its interference with ethylene production by Dm 7 and MF 1 cells. In fact, the inhibitory effect of ethionine was mostly nullified by the application of ethylene, S-adenosyl-L-methionine, or 1-aminocyclopropane-1-carboxylic acid. Taken together these results suggest that both the effective concentration of ethylene and the pathway of ethylene biosynthesis inD. mucoroides may be similar to those in higher plants. Ethylene was also found to be produced in various species and strains of cellular slime molds, even during the asexual process. The possible functions of ethylene in the asexual development are discussed in relation to cell aggregation and differentiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...