Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1434-1948
    Keywords: Iron(III) ; Peroxo Complexes ; Kinetics ; Hydrogen Peroxide ; Catalase ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The new diiron complex [Fe2(tbpo){O2As(CH3)2}(CH3O)(CH3OH)](ClO4)3 · 5 CH3OH · 2 H2O (1) containing a (μ-alkoxo)(μ-dimethylarsinato)diiron(III) core was synthesized using the heptadentate ligand N,N,N′,N′-Tetrakis(2-benzimidazolylmethyl)-1,3-diamino-2-propanol (Htbpo). The complex was characterized structurally by X-ray crystallography. 1reproduces the coordination mode and the stoichiometry of the proposed purple acid phosphatase-arsenate inhibitor complex. More importantly, 1 is a good functional model for the activation of small molecules, since the solvent molecule in the coordination sphere of each iron ion can be substituted very easily by a small substrate molecule. This is confirmed by the comparatively high pH-dependent catalase-like activity of 1. In order to study the influence of the cacodylate bridge on the formation of the metastable adduct with hydrogen peroxide, the analogous hydroxo-bridged complex [Fe2(tbpo)(OH)(NO3)2](NO3)2 · CH3OH · 2 H2O (2) was employed. The reactions of 1and 2 with H2O2 were studied as a function of [H2O2], pH, temperature, and pressure, and the kinetic results including the activation parameters are reported. In the case of compound 2 the reaction proceeds in one step, and the observed first order rate constant, kobs, shows a linear dependence on the hydrogen peroxide concentration with a zero intercept. For complex 1 the kinetic traces could be fitted to two exponential functions. One of the observed pseudo-first-order rate constants, kobs1, exhibits a linear dependence on the hydrogen peroxide concentration with a zero intercept, whereas the other rate constant, kobs2, was independent of the hydrogen peroxide concentration. A mechanistic interpretation is presented.Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2005/1999/99068_s.pdf or from the author.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1998 (1998), S. 389-396 
    ISSN: 1434-1948
    Keywords: Substitution mechanism ; Platinum ; Pressure dependence ; Kinetics ; Dinuclear complex ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Both reaction steps observed for the substitution of water by thiourea in the complexes [Pt(en)(OH2)2]2+ and [Pt(phen)(OH2)2]2+ (en = ethylenediamine, phen = 1,10-phenanthroline) were investigated under pseudo-first-order conditions using the stopped-flow technique. The substitution of the second water molecule in each complex was also studied under high pressure. The observed pseudo-first-order rate constants kobs (s-1) obeyed the equation k1,2obs= k1,2[tu] (tu = thiourea), where “1” and “2” refer to the first and the second substitution reactions, respectively. Kinetic parameters associated with the substitution process are: k1en (25.0°C, pH = 3.0, I = 0.1 M) = 25.6 M-1 s-1, ΔH# = 51 kJ mol-1, ΔS# = -48 J K-1 mol-1; k2en (same conditions) = 12.1 M-1 s-1, ΔH# = 30 kJ mol-1, ΔS# = -124 J K-1 mol-1, ΔV# = -7 cm3 mol-1; k1phen (25.0°C, pH = 1.0, I = 0.1 M) = 2900 M-1 s-1, ΔH# = 41 kJ mol-1, ΔS# = -41 J K-1 mol-1; k2phen (same conditions) = 1170 M-1 s-1, ΔH# = 37 kJ mol-1, ΔS#= -61 J K-1 mol-1, ΔV# = -5 cm3 mol-1. The temperature and pressure dependence of all the processes studied suggest an associative substitution mechanism. The hydroxo-bridged dinuclear complex [{Pt(phen)(μ-OH)}2]2+ is formed from [Pt(phen)(OH2)2]2+ in aqueous solution unless the solution is very dilute and highly acidic. The X-ray structure of [{Pt(phen)(μ-OH)}2](F3CSO3)2 · 2 H2O was determined. It belongs to the triclinic space group P1­ and has one formula unit in the unit cell. The unit cell dimensions are a = 7.126(5), b = 9.665(5), c = 12.774(7) Å; α = 71.85(5), β = 85.52(5), γ = 73.12(5) deg; V = 799.9(8) Å3. The structure was solved with the Patterson method and refined to R = 0.061. A square planar coordination of the platinum centers is observed, with no deviations from planarity but distortions due to the small bite angle of phen and the four-membered ring. No significant lengthening of the Pt-O bond [mean value: 2.03(1) Å] is observed in comparison with [{Pt(NH3)2(μ-OH)}2]2+.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...