Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Key words Plasma clearance of catecholamines ; MAO-inhibition ; COMT-inhibition ; Disprocynium24 ; Uptake2 ; Organic cation transporters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract As selective inhibitors of the extraneuronal monoamine uptake system (uptake2) suitable for in-vivo studies were not available, the question of whether uptake2 plays a definite role in vivo is largely unresolved. We attempted to resolve the question by using 1,1′-diisopropyl-2,4′-cyanine iodide (disprocynium24), a novel agent that blocks uptake2 in vitro with high potency. Anaesthetized rabbits were infused with 3H-labelled noradrenaline, adrenaline and dopamine, and catecholamine plasma clearances as well as rates of spillover of endogenous catecholamines into plasma were measured before and during treatment with either disprocynium24 or vehicle. Four groups of animals were studied: group I, no further treatment; group II, monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT) inhibited; group III, neuronal uptake (uptake1) inhibited; group IV, uptake1 as well as MAO and COMT inhibited. Disprocynium24 (270 nmol kg–1 i.v. followed by an i.v. infusion of 80 nmol kg–1 min–1) did not alter heart rate and mean arterial blood pressure, but increased cardiac output by 22% and decreased the total peripheral vascular resistance by 16% with no difference between groups. When compared with vehicle controls, catecholamine clearances (normalized for the cardiac output of plasma) were decreased and spillover rates increased in response to disprocynium24. Although there were statistically significant between-group differences in baseline clearances (which decreased in the order: group I 〉 group II 〉 group III 〉 group IV), the drug-induced clearance reductions relative to vehicle controls were similar in groups I to IV and amounted to 29–38% for noradrenaline, 22–31% for adrenaline and 16–22% for dopamine. Hence, there was still a significant % reduction in catecholamine clearances even after the combined inhibition of MAO and COMT, and there was no increase in the % reduction of clearances after inhibition of uptake1. Noradrenaline spillover increased in response to disprocynium24 in all four groups by 1.6- to 1.9-fold, whereas a 1.5- to 2.0-fold increase in adrenaline and dopamine spillover was observed in groups II and IV only. The results indicate that disprocynium24 interferes with the removal of circulating catecholamines not only by inhibiting uptake2, but also by inhibiting related organic cation transporters. As disprocynium24 increased the spillover of endogenous catecholamines into plasma even after inhibition of MAO and COMT, organic cation transporters may also be involved in the removal of endogenous catecholamines before they enter the circulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: α1-Adrenoceptor ; Decynium22 ; Disprocynium24 ; Extraneuronal monoamine transporter ; Pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract 1,1′-Diethyl-2,2′-cyanine (decynium22) and 1,1′-diisopropyl-2,4′-cyanine (disprocynium24) are highly potent inhibitors of the extraneuronal monoamine transporter. When given as i.v. bolus injections (4 μmol kg−1) to anaesthetized rabbits, both drugs elicited a transient fall in blood pressure without altering heart rate. The observed maximum fall in diastolic blood pressure was 59% after decynium22 and 43% after disprocynium24 administration. The pharmacokinetics of decynium22 and disprocynium24 were similar; they were characterized by short half-lives for elimination (8.2 and 4.5 min, respectively) and very high plasma clearances (173 and 180 ml kg−1 min−1, respectively). The mechanism underlying the blood pressure-lowering effect of decynium22 was explored in the isolated incubated rabbit aorta. Decynium22 antagonized the noradrenaline-induced contraction; the pA2 for this interaction was 7.6, and the slope of the corresponding Schild plot was unity. In a membrane preparation from rat myocardium, decynium22 as well as disprocynium24 inhibited the specific binding of [125I]-2-[β-(4-hydroxy-3-iodophenyl)-ethy-laminomethyl]-tetralone (125I-HEAT), a selective ligand to α1-adrenoceptors. The Ki's were 5.3 and 240 nmol l−1 for decynium22 and disprocynium24, respectively. The type of binding inhibition by decynium22 was competitive. It is concluded that the two inhibitors of extraneuronal monoamine transport decynium22 and disprocynium24 lower blood pressure by blocking α1-adrenoceptors. A comparison of their potencies in blocking extraneuronal monoamine transport and α1-adrenoceptors clearly indicates that disprocynium24 is more suitable for studies designed to determine the role of extraneuronal monoamine transport in vivo. Considering its very fast elimination kinetics, disprocynium24 must be administered by constant rate-infusions in order to avoid large fluctuations of plasma levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1912
    Keywords: Key wordsα1-Adrenoceptor ; Decynium22 ; Disprocynium24 ; Extraneuronal monoamine transporter ; Pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract 1,1′-Diethyl-2,2′-cyanine (decynium22) and 1,1′-diisopropyl-2,4′-cyanine (disprocynium24) are highly potent inhibitors of the extraneuronal monoamine transporter. When given as i.v. bolus injections (4 μmol kg–1) to anaesthetized rabbits, both drugs elicited a transient fall in blood pressure without altering heart rate. The observed maximum fall in diastolic blood pressure was 59% after decynium22 and 43% after disprocynium24 administration. The pharmacokinetics of decynium22 and disprocynium24 were similar; they were characterized by short half-lives for elimination (8.2 and 4.5 min, respectively) and very high plasma clearances (173 and 180 ml kg–1 min–1, respectively). The mechanism underlying the blood pressure-lowering effect of decynium22 was explored in the isolated incubated rabbit aorta. Decynium22 antagonized the noradrenaline-induced contraction; the pA2 for this interaction was 7.6, and the slope of the corresponding Schild plot was unity. In a membrane preparation from rat myocardium, decynium22 as well as disprocynium24 inhibited the specific binding of [125I]-2-[β-(4-hydroxy-3-iodophenyl)-ethylaminomethyl]-tetralone (125I-HEAT), a selective ligand to α1-adrenoceptors. The Ki‘s were 5.3 and 240 nmol l–1 for decynium22 and disprocynium24, respectively. The type of binding inhibition by decynium22 was competitive. It is concluded that the two inhibitors of extraneuronal monoamine transport decynium22 and disprocynium24 lower blood pressure by blocking α1-adrenoceptors. A comparison of their potencies in blocking extraneuronal monoamine transport and α1-adrenoceptors clearly indicates that disprocynium24 is more suitable for studies designed to determine the role of extraneuronal monoamine transport in vivo. Considering its very fast elimination kinetics, disprocynium24 must be administered by constant rate-infusions in order to avoid large fluctuations of plasma levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...