Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Amino acids  (1)
  • Dopamine release  (1)
  • 1
    ISSN: 1432-1106
    Schlagwort(e): In vivo voltammetry ; Neural transplantation ; Dopamine release ; Striatum
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary In vivo voltammetry was used to monitor dopamine (DA) neuron activity during the course of reinnervation of the initially denervated caudateputamen by grafted mesencephalic neurons. Fetal DA neurons were implanted as a cell suspension into the depth of the caudate-putamen in adult 6-hydroxydopamine-lesioned recipient rats. Recordings were performed over a period of 2.5–4 months, starting within a week after transplantation, using chronically implanted surface-treated multifiber carbon electrodes. The voltammetric method used in this study has generated considerable discussion centred on the ability of the multifiber electrodes to measure DA alone in vivo, but the results of previous studies have led to the conclusion that changes in the voltammetric signal most probably reflect dopaminergic terminal activity. It seems therefore possible to follow the time-course of changes in the voltammetric signal amplitude during the process of dopaminergic reinnervation of the host striatum from the grafts. A 6-hydroxydopamine lesion of the mesostriatal dopamine pathway caused a substantial (〉 80%) reduction of the voltammetric signal within 8–10 days, and the low residual signal remained essentially unchanged for time periods up to at least 5 months in the non-grafted control rats. In 7 of 11 rats with DA-rich grafts there was a recovery of the signal amplitude to levels within, or close to, the range recorded from the striatum of normal intact rats. The increase was observed 6–8 weeks after grafting in the rats which had received the largest transplants, and at about 13–14 weeks after grafting in the rats which had received the smallest ones. The recovery of the signal amplitude, from baseline to maximal response, was quite rapid and typically developed between two or three recording sessions, i.e. over a period of one to two weeks. In contrast to the intact striatum, the recovered signal in the graft-reinnervated striata showed a progressive decline within one hour of sampling time at high sampling frequencies (1 per min to 1 per 3 min). Grafted striata also showed a larger response to systemically administered amphetamine than did intact striata. Since the changes in the voltammetric signal recorded with the multifiber electrode mainly reflect dopaminergic terminal activity, the results provide evidence that the intrastriatal DA-rich grafts are spontaneously active, and that the grafted DA neurons can restore DA neuro-transmission in the reinnervated part of the host caudate-putamen to levels which are within the normal range. From the time-course of changes in the voltammetric signal it can be estimated that the outgrowing DA fibers, after an initial maturation period, expand from the graft into the host striatum at a maximum rate of about 0.1 mm per week, and that the advancing front of graft-derived fibers may be capable of saturating the area around the electrode tip with new terminals within a time period of about 1–2 weeks. The characteristics of the signal seem compatible with the view that the activity of the individual grafted DA neurons is greater than that of the mesostriatal DA neurons in situ.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1438-2199
    Schlagwort(e): Amino acids ; Excitatory amino-acid ; NMDA ; Dopamine ; Striatum ; In vivo voltammetry
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary In vivo voltammetry was used in freely moving rats to study the processes whereby striatal dopamine (DA) release is regulated by corticostriatal glutamatergic neurons. Electrical stimulation of the cerebral cortex was found to markedly increase the striatal DA-related voltammetric signal amplitude. Similar enhancements have been observed after intracerebroventricular administration of 10nmoles glutamate, quisqualate and AMPA, whereas NMDA was found to decrease the amplitude of the striatal signals. The NMDA receptor antagonist APV did not significantly affect the voltammetric signal but prevented the NMDA-induced depression of the DA-related signals. These data are in agreement with those obtained in numerous previous studies suggesting that the glutamatergic corticostriatal neurons exert activatory effects on the striatal DA release via non-NMDA receptors. The mechanism involved might be of a presynaptic nature. The role of the NMDA receptors may however consist of modulating the dopaminergic transmission phasically and in a depressive way, which would be consistent with behavioural data suggesting the existence of a functional antagonism between the activity of the corticostriatal glutamatergic and nigrostriatal dopaminergic systems.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...