Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1995-1999  (2)
  • Dosimetry  (1)
  • Key Words: Elastic wave scattering, nonlinear inversion, Rayleigh, Mie approximation.  (1)
Materialart
Erscheinungszeitraum
  • 1995-1999  (2)
Jahr
Schlagwörter
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Pure and applied geophysics 156 (1999), S. 557-589 
    ISSN: 1420-9136
    Schlagwort(e): Key Words: Elastic wave scattering, nonlinear inversion, Rayleigh, Mie approximation.
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract —We investigate a new nonlinear inversion method for low frequencies to determine the bulk and shear modulus as well as the material density and the location of subsurface inhomogeneities. The solution is a direct exact nonlinear inversion of single scattered waves containing near- and far-field terms for incident P and scattered P and S waves, allowing for inversion of parameters in the vicinity and at distance from the sources and receivers. Because the approach is based on single scattering theory, the range of application includes single strong scattering anomalies of various sizes like magma chambers, gas- or fluid-filled cavities, or buried near-surface obstacles. The replacement of the material properties by a new set of parameters, referred to as scattering factors, allows the inverse problem to be solved analytically. The nonlinear nature of the scattering problem is investigated and implications for the inversion process are discussed. The deviations in the elastic parameters as a function of the scattering factors show a strong asymmetry about zero, and therefore linearized approximations will perform differently, depending on the sign of the perturbation. Based on the low frequency (Rayleigh) approximation, we introduce and evaluate a pair of approximations (Mie) derived by numerical and analytical integration of the Rayleigh approximation. Both approximations are based on the underlying principle of subdividing the inhomogeneities into a number of small noninteracting parts and subsequent integration over the total volume, thus increasing the Rayleigh limit and producing better resolution of the parameter estimates during the inversion. The two Mie approximations, when evaluated as a function of scattering angle and distance, produce similar results in the mid- and far-field of the inhomogeneity and reveal better resolution than the Rayleigh approximation. For three anomalies of ± 50% in bulk modulus, shear modulus, and density, the relative error between the exact solution and the two Mie approximations remains below 10%, 20%, and 30%, respectively, for values of k p R 〈 3.0, where R is the radius of the heterogeneity. However, smaller errors for individual cases are found for values up to k p R≈ 4.5. The performance of the inversion based on the analytically and the numerically integrated Mie approximation is tested for single parameter perturbations, revealing reliable and stable inversion results for the bulk and the shear modulus, reasonable results for the density, and crosstalk between the shear modulus and the density. The results show well-defined locations of the anomalies and slight deviations in the estimates of their magnitudes, which can be explained by amplitude and phase deviations between the analytical solution used for forward modeling and the approximations used for the inversion. The analytical Mie approximation provides a fast means to estimate elastic parameters compared to the more time consuming numerically integrated approximation, while the latter can be applied to more arbitrarily shaped inhomogeneities.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    European journal of nuclear medicine 22 (1995), S. 977-988 
    ISSN: 1619-7089
    Schlagwort(e): Dosimetry ; Radiation synovectomy ; Monte Carlo simulation ; Rheumatoid arthritis
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Beta-particle dosimetry of various radionuclides used in the treatment of rheumatoid arthritis was estimated using Monte Carlo radiation transport simulation coupled with experiments using reactor-produced radionuclides and radiachromic film dosimeters inserted into joint phantoms and the knees of cadavers. Results are presented as absorbed dose factors (cGy-cm2/MBq-s) versus depth in a mathematical model of the rheumatoid joint which includes regions of bone, articular cartilage, joint capsule, and tissue (synovium) found in all synovial joints. The factors can be used to estimate absorbed dose and dose rate distributions in treated joints. In particular, guidance is provided for those interested in (a) a given radionuclide's therapeutic range, (b) the amount of radioactivity to administer on a case-by-case basis, (c) the expected therapeutic dose to synovium, and (d) the radiation dose imparted to other, nontarget components in the joint, including bone and articular cartilage.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...