Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0819
    Keywords: Key words Microgravity ; Ground deformation ; Etna ; Eruption precursors ; Dyke injection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The 1991–1993 eruption was probably the largest on Mt. Etna for 300 years. Since then the volcano has entered an unusually quiescent period. A comprehensive record of gravity and ground deformation changes presented here bracket this eruption and give valuable insight into magma movements before, during and after the eruption. The gravity and deformation changes observed before the eruption (1990–1991) record the intrusion of magma into the summit feeder and the SSE-trending fracture system which had recently been active in 1978, 1979, 1983 and 1989, creating the feeder dyke for the 1991–1993 eruption. In the summit region gravity changes between 1992 and 1993 (spanning the end of the eruption) reflect the withdrawal of magma from the conduit followed more recently (1993–1994) by the re-filling of magma in the conduit up to pre-eruption levels. In contrast, in the vicinity of the fracture zone, gravity has remained at the 1991–1992 level, indicating that no withdrawal has occurred here. Rather, magma has solidified in the fracture system and sealed it such that the 1993–1994 increase in magma level in the conduit was not accompanied by further intrusion into the flanks. Mass calculations suggest that a volume of at least 107  m3 of magma has solidified within the southeastern flank of the volcano.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...