Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 271 (1993), S. 824-833 
    ISSN: 1435-1536
    Keywords: Polypropylene ; EPDM ; interphase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The interaction of isotactic polypropylene with ethylene propylene diene terpolymer in their blends has been investigated by use of differential scanning calorimetry, dynamic mechanical analysis, wide- and small-angle x-ray scattering, and by investigating the nucleation and kinetics of crystallization of the iPP component under the polarization microscope. It is found, that the dispersion of the EPDM component in the iPP matrix is dependent on blend composition and is maximal at 10% EPDM content. An interface layer between the two components is formed by migration of iPP molecules into the EPDM phase. A model for this interface is proposed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 31 (1993), S. 585-592 
    ISSN: 1741-0444
    Keywords: Air Flow ; Human ; Nasal cavity ; Nose ; Turbinate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The nasal cavity is the main passage for air flow between the ambient atmosphere and the lungs. A preliminary requisite for any investigation of the mechanisms of each of its main physiological functions, such as filtration, air-conditioning and olfaction, is a basic knowledge of the air-flow pattern in this cavity. However, its complex three-dimensional structure and inaccessibility has traditionally prevented a detailed examination of internalin vivo orin vitro airflow patterns. To gain more insight into the flow pattern in inaccessible regions of the nasal cavity we have conducted a mathematical simulation of asymmetric airflow patterns through the nose. Development of a nose-like model, which resembles the complex structure of the nasal cavity, has allowed for a detailed analysis of various boundary conditions and structural parameters. The coronal and sagittal cross-sections of the cavity were modeled as trapezoids. The inferior and middle turbinates were represented by curved plates that emerge from the lateral walls. The airflow was considered to be incompressible, steady and laminar. Numerical computations show that the main air flux is along the cavity floor, while the turbinate structures direct the flow in an anterior-posterior direction. The presence of the turbinates and the trapezoidal shape of the cavity force more air flux towards the olfactory organs at the top of the cavity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...