Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1017
    Keywords: M13 coat protein ; Lipid protein interaction ; ESR spectroscopy ; Time-resolved fluorescence spectroscopy ; Order parameter ; Diffusion coefficient
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Model membranes with unsaturated lipid chains containing various amounts of M13 coat protein in the α-helical form were studied using time-resolved fluorescence and ESR spectroscopy. The lipid-to-protein (L/P) ratios used were 〉 12 to avoid protein-protein contacts and irreversible aggregation leading to β-polymeric coat protein. In the ESR spectra of the 12-SASL probe in dioleoyl phosphatidylcholine (DOPC) bilayers no second protein induced component is observed upon incorporation of M13 coat protein. However, strong effects are detected on the ESR lineshapes upon changing the protein concentration. The ESR lineshapes are simulated by assuming a fixed ratio between the parallel (D‖) and perpendicular (D⊥) diffusion coefficients of 4, and an order parameter equal to zero. It is found that increasing the protein concentration from L/P ∞ to L/P 15 results in a decrease of the rotational diffusion coefficient D⊥ from 3.4 × 107 to 1.9 × 107 s−1. In the time-resolved fluorescence experiments with DPH-propionic acid as a probe, it is observed that increasing the M13 coat protein concentration causes an increase of the two fluorescent lifetimes, indicating an increase in bilayer order. Analysis of the time-resolved fluorescence anisotropy decay allows one to quantitatively determine the order parameters 〈P2〉 and 〈P4〉, and the rotational diffusion coefficient D⊥ of the fluorescent probe. The order parameters 〈P2〉 and 〈P4〉 increase from 0.34 to 0.55 and from 0.59 to 0.77, respectively, upon adding M13 coat protein to DOPC bilayers with an L/P ratio of 35. The rotational diffusion coefficient D⊥ of the DPH-propionic acid probe decreases on incorporating M13 coat protein, in accordance with the ESR results. It is concluded that M13 coat protein in the α-monomeric state is not able to produce a long living lipid boundary shell and consequently an immobilization of the lipids. An overall effect on the lipids is induced, resulting in a reduction in the dynamics and an increase in average lipid order. The hydrophobic region of M13 coat protein is proposed to perfectly match the lipid bilayer, resulting in a relatively small distortion of the bilayer structure of the lipid system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...