Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 15 (1993), S. 229-234 
    ISSN: 1432-0789
    Keywords: Earthworms ; Water-stable aggregation ; Tensile strength ; Organic C ; Carbonate ; Polysaccharides ; Texture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Some physical and chemical properties of 1-to 2-mm aggregates obtained from casts and the burrow-wall material of the earthworm species Lumbricus terrestris, Aporrectodea longa, and Aporrectodea caliginosa were determined in order to show the effects of earthworms on the stabilization of soil aggregates. The results were compared with those of the natural soil from the Ap horizon of a Parabraunerde (Luvisol, FAO). Both the tensile strength and the water stability of aggregates from casts and burrow-wall material were reduced compared with those of the natural aggregates but were increased compared with those of remoulded aggregates. These results indicate that to a great extent existing bonds are destroyed by earthworm ingestion. Nevertheless, earthworm activities are advantageous for the stabilization of reformed aggregates. The coarse sand fraction is reduced by selective ingestion by earthworms. The organic C content is increased by 4.1–21.0% for burrow-wall material and by 21.2–43.0% for casts. The carbonate content of aggregates from casts and burrow-wall material of L. terrestris was reduced by more than 50%, while that of A. longa showed no noticeable changes and that of A. caliginosa was increased by more than 60%. The total content of polysaccharides was increased by 35–87% for casts and by 33–46% for the burrow-wall material of all earthworm species. The most frequently detected monosaccharides were glucose, galactose, and glucosamine. L. terrestris appeared to have the strongest effect on the interparticle bonding of the reformed aggregates, measured both as tensile strength and water stability, followed by A. longa and A. caliginosa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 262-269 
    ISSN: 1432-0789
    Keywords: Keywords Axial pressure ; Earthworms ; Ecological groups ; Radial pressure ; Burrowing activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The aim of this study was to measure the pressures exerted by earthworms during burrowing. For this purpose we developed two methods with which to quantify the axial and radial pressure. The data were recorded with an electronic balance that was connected to a PC. Artificial earthworm burrows were used to standardize the measurements. Plexiglas tubes with diameters ranging from 2 to 6.3 mm which corresponded to the diameter of the earthworms were used. A pin was placed inside the tubes, on which the earthworms exerted a pressure by peristaltic locomotion. Only the maximum values of the pressure measurement were taken into account for evaluation, and the arithmetic mean was calculated. The measurements were conducted with Aporrectodea longa, Lumbricus terrestris, Aporrectodea caliginosa, Octolasion cyaneum, Allolobophora chlorotica, Aporrectodea rosea, Lumbricus rubellus and Dendrobaena octaedra. The species examined were classified into ecological groups. The mean axial pressures exerted by each group were in the order: epigeic (14–25 kPa), endogeic (27–39 kPa) and anecic (46–65 kPa). For the mean radial pressure the order was: epigeic (39–63 kPa), anecic (72–93 kPa) and endogeic (59–195 kPa). It was apparent from the results that radial pressure is the most important pressure with respect to the burrowing activity of earthworms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...