Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 292 (1998), S. 47-56 
    ISSN: 1432-0878
    Keywords: Key words: Plethodontids ; Urodeles ; Optic tectum ; Electrophysiology ; Biocytin ; Salamander ; Plethodon jordani ; Hydromantes genei
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The amphibian optic tectum and pretectum have been analyzed in detail anatomically and physiologically, and a specific model for tecto-pretectal interaction in the context of the visual guidance of behavior has been proposed. However, anatomical evidence for this model, particularly the precise pattern of pretecto-tectal connectivity, is lacking. Therefore, we stained pretectal neurons intracellularly in an in-vitro preparation of the salamanders Plethodon jordani and Hydromantes genei. Our results demonstrate that the projections of neurons of the nucleus praetectalis profundus are divergent and widespread. Individual neurons may project divergently to telencephalic (ipsilateral amygdala and striatum), diencephalic (ipsi-and contralateral thalamus, contralateral pretectum), and mesencephalic (ipsi- and contralateral tectum and tegmentum) centers, and to the ipsi- and contralateral medulla oblongata and rostral spinal cord. The projection of pretectal cells to the optic tectum is bilateral; axonal structures do not show discernible patterns and are present in all layers of the superficial white matter. A classification of pretectal neurons on the basis of axonal termination pattern or dendritic arborization has not been possible. Our results do not support the hypothesis that a distinct class of pretectal neurons projects to a particular subset of tectal cells. Rather, the pretectum appears to influence the tectum indirectly, acting either on retinal afferents or modulating inhibitory interneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...