Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Endocrine pancreas ; Peptides ; Ultrastructure ; Immunogold labeling ; Sea bass ; Dicentrarchus labrax ; (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Insulin (B)-, somatostatin 25 (SST-25) (D1)-, somatostatin 14 (SST-14) (D2)-, glucagon (A)-, and glucagon PP/PYY/NPY (PP-like)-immunoreactive cells in islets of sea bass (Dicentrarchus labrax) were characterized according to their ultrastructure and immunogold labeling. Cells labeled with antisera to bonito and salmon insulin had numerous secretory granules with a small halo and round core, and a few with wide halo and round or crystalloid core. Gold particles were found throughout the granule in tissue labeled with the former but only in the core in tissue labeled with the latter. D1 cells had large granules with a medium electron-dense content and some with a darker core. D2 had smaller medium or high electron-dense secretory granules than D1 cells, located mainly in cell periphery. Glucagon-immunoreactive cells contained some granules with a polygonal core that was heavily labeled and other granules with a round core with no or hardly any labeling. Glucagon and PP-like immunoreactivity were co-localized in secretory granules, in which the gold particles showed no different distribution with the various antisera used. PYY-immunoreactive granules were also found in nerve endings. All the pancreatic endocrine cell types showing involutive characteristics are found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Endocrine pancreas ; Ontogeny ; Ultrastructure ; Dicentrarchus labrax (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The primordial cord and the primitive, single and primordial islets present in the 3 earliest stages of the developing endocrine pancreas of sea bass were studied ultrastructurally. The primordial cord consisted of type I and II cells and was included in the gut. Besides these cell types, X cells were seen in the primitive islet. The single islet was made up of type I, II, III and IV cells. A correlation between these endocrine cell-types and cells previously identified immunocytochemically, was established. Type I, II, III and IV cells, correlated respectively with SST-25-, insulin-, SST-14- and glucagon-immunoreactive cells, and could be related to the D1, B, D2 and A cells, respectively, of older larvae and adult sea bass. Each cell type shows characteristic secretory granules from its first appearance. A progressive development of the organelles and an increase in the number and size of the secretory granules, whose ultrastructure also varied, was observed in the endocrine cells of the primordial cord and the succeeding islets. In 25-day-old larvae at the beginning of the fourth developmental stage, the primordial islet, the first ventral islet found, was close to a pancreatic duct and blood vessel, and consisted of type I and II cells whose ultrastructure was similar to that of the type I and II cells in the primordial cord. These data suggest a ductular origin for the pancreatic endocrine cells in the ventral pancreas. It is suggested that although endocrine cells undergo mitosis, their increase in number during the earliest development stages is principally due to the differentiation of surrounding cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Endocrine pancreas ; Ontogeny ; Ultrastructure ; Dicentrarchus labrax (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The big and secondary islets of sea bass larvae were characterized ultrastructurally from, 25 to 60 days after hatching. From the 25th day, big islets consisted of inner type II and III, external type I and peripheral type IV cells. From the 55th day, type V cells appeared in limited peripheral areas. Secondary islets, first found in 32-day-old larvae, were made up of inner type II and III, external type I, and peripheral either type IV and V cells (type I islets), or only type V cells (type II islets). Type I cells contained secretory granules with a fine granular, low-medium electron-dense material, whereas the secretory granules of type II cells were smaller and had a high electron-dense core with diffused limits; needle and rod-like crystalloid contents were occasionally found. Type III secretory granules posessed a homogeneous, high or medium electron-dense material with or without a clear halo. Type IV cells had secretory granules with a polygonal dense core embedded in a granular matrix and granules containing a high or medium electron-dense material. Type V cells had secretory granules with a fine granular, high or medium electron-dense content. These cell-types correlated with cells previously identified immuno-cytochemically, as regards to their distribution in the islets, and related to those characterized ultrastructurally in adult specimens. Thus, types I, II, III, IV and V correspond to D1, B, D2, A and PP cells, respectively. From the 32nd day onwards, endocrine cells of all the different types were found grouped, type V cells also being observed in isolation close to pancreatic ducts and/or blood vessels. Small groups consisting of type I and II cells were found in 40-day-old larvae. A mitotic centroacinar ductular cell containing some secretory granules similar to those of type I cells, was seen adjacent to a type I cell. As the larvae grew older, the endoplasmic reticulum developed, the number of free ribosomes decreased, and the number and size of the secretory granules increased. Dark type I, II, III, IV and V cells were found in the islets and cell clusters from the 55th day onwards.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 270 (1992), S. 339-352 
    ISSN: 1432-0878
    Keywords: Endocrine pancreas ; Ontogeny ; Regulatory peptides ; Immunocytochemistry ; Dicentrarchus labrax (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The development of the endocrine pancreas of the teleost sea bass (Dicentrarchus labrax, L.) was examined from hatching to 61 days, using the peroxidase-antiperoxidase technique for light microscopy. Mammalian and bonito insulin (mI and bI)-, salmo somatostatin-25 (SST-25)-, somatostatin-14 (SST-14a and b)-, glucagon-, bovine pancreatic polypeptide (PP)-, peptide tyrosine-tyrosine (PYY)- and salmo neuropeptide Y (NPY)-like immunoreactivity was demonstrated. Four ontogenetic stages were established according to the organization and immunostaining of the endocrine cells. One cell strand or primordial cord showing mI/bI- and SST-25/SST-14a-like immunoreactivity was first found at hatching in the dorsal epithelium of the anterior zone of the midgut (stage 1). One primitive islet, comprising outer SST-25/SST-14a- and inner mI/bI- and SST-14a/ SST-14b-immunoreactive cells, was found in 2- to 5-day-old larvae (stage 2). One single islet, in which glucagon-immunoreactive cells appear in the periphery, was found in larvae from 9 to 20 days after hatching (stage 3). One big islet containing, in addition, PP-immunoreactive cells in the outer region and slender cell processes which showed PYY-like immunoreactivity, was found from 25 to 61 days after hatching. During this period, primordial islets, composed of SST-25- and bI-immunoreactive cells, and clustered or isolated pancreatic endocrine cells, close to the pancreatic duct, as well as small and intermediate islets (secondary islets), in which glucagon, PP, PYY and NPY seem to be co-localized, were progressively found (stage 4). The origin of the endocrine pancreas of sea bass, and the ontogenetic and phylogenetic significance, are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...