Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 12 (1988), S. 157-171 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A soil-reinforcement load transfer model was developed by the authors1 to simulate the response of the reinforced soil material to triaxial compression and direct shearing. This paper presents the application of the proposed model for the numerical analysis of direct shear tests on sand samples reinforced with different types of tension resisting reinforcements. A parametric study is conducted to evaluate the effect of the mechanical characteristics and dilatancy properties of the soil, extensibility (elastic modulus) of the reinforcements, and their inclination with respect to the failure surface on the response of the reinforced soil material to direct shearing. An attempt is made to verify the proposed model by comparing numerical test simulations with experimental results reported by Jewell,2 and Gray and Ohashi.3 Comparisons of predicted and experimental results illustrate that the model can provide adequate simulations of the response of the reinforced soil material to shearing. In particular, it allows an evaluation of the effect of soil dilatancy (or contractancy), and extensibility of the reinforcement on tension forces generated in inclusions during shearing.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 12 (1988), S. 141-155 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Results of both triaxial and direct shear tests on reinforced soil samples performed by different investigators have shown that soil dilatancy and extensibility of the reinforcements have a significant effect on the generated tension forces in the inclusions. An appropriate soil--reinforcement load transfer model, integrating the effect of soil dilatancy and reinforcement extensibility is therefore needed to adequately predict forces in the inclusions under expected working loads. This paper present a load transfer model assuming an elastoplastic strain hardening behaviour for the soil and an elastic--perfectly plastic behaviour for the reinforcement. This model is used to analyse the response of the reinforced soil material under triaxial compression loading. A companion paper present the application of this model for numerical simulations of direct shear tests on sand samples reinforced with different types of tension resisting reinforcements. The model allows an evaluation of the effect of various parameters such as mechanical characteristics and dilatancy properties of the soil, extensibility of the reinforcements, and their inclination with respect to the failure surface, on the development of resisting tensile stresses in the reinforcements. A parametric study is conducted to evaluate the effect of these parameters on the behaviour of the reinforced soil material. An attempt is also made to verify the proposed model by comparing numerical predictions with available experimental results of both triaxial and direct shear tests on reinforced soil samples. This model can be used for analysis and design of reinforced soil walls with different types of tension resisting inclusions to predict tension forces under expected working loads.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...