Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 325-352 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; artificial boundary conditions ; flux and pressure conditions ; finite elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Fluid dynamical problems are often conceptualized in unbounded domains. However, most methods of numerical simulation then require a truncation of the conceptual domain to a bounded one, thereby introducing artificial boundaries. Here we analyse our experience in choosing artificial boundary conditions implicitly through the choice of variational formulations. We deal particularly with a class of problems that involve the prescription of pressure drops and/or net flux conditions.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 1-22 
    ISSN: 0271-2091
    Keywords: accretion disk ; compressible Navier-Stokes equations ; stratified flow ; operator splitting ; hydrodyamic code ; boundary layer ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new numerical approach based on consistent operator splitting is presented for computing compressible, highly stratified flows in astrophysics. The algorithm is particularly designed to search for steady or almost steady solutions for the time-dependent Navier-Stokes equations, describing viscous flow under the influence of a strong gravitational field. The algorithm proposed is multidimensional and works in Cartesian, cylindrical or spherical co-ordinates. It uses a second-order finite volume scheme with third-order upwinding and a second-order time discretization. An adaptive time step control and monotonic multilevel grid distribution has been incorporated to speed up convergence. This method has been incorporated into a hydrodynamical code by which, for the first time, for two-dimensional models the dynamics of the boundary layer in the accretion disk around a compact star could be computed over the whole viscous time scale. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...